Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2016, Volume 26, Issue 1, Pages 15–26
DOI: https://doi.org/10.20537/vm160102
(Mi vuu515)
 

This article is cited in 12 scientific papers (total in 12 papers)

MATHEMATICS

On the spectral set of a linear discrete system with stable Lyapunov exponents

I. N. Banshchikovaab, S. N. Popovaac

a Department of Differential Equations, Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b Department of Higher Mathematics, Izhevsk State Agricultural Academy, ul. Studencheskaya, 11, Izhevsk, 426069, Russia
c Department of Dynamical Systems, N. N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, ul. S. Kovalevskoi, 16, Yekaterinburg, 620990, Russia
References:
Abstract: Let us fix a certain class of perturbations of the coefficient matrix $A(\cdot)$ for a discrete time-varying linear system
$$ x(m+1)=A(m)x(m),\quad m\in\mathbb Z,\quad x\in\mathbb R^n, $$
where $A(\cdot)$ is completely bounded on $\mathbb Z$, i.e., $\sup_{m\in\mathbb Z}(\|A(m)\|+\|A^{-1}(m)\|)<\infty$. The spectral set of this system, corresponding to a given class of perturbations, is a collection of all Lyapunov spectra (with multiplicities) for perturbed systems, when the perturbations range over this class all. The main attention is paid to the class $\mathcal R$ of perturbed systems
$$ y(m+1)=A(m)R(m)y(m),\quad m\in\mathbb Z,\quad y\in\mathbb R^n, $$
where $R(\cdot)$ is completely bounded on $\mathbb Z$, as well as its subclasses $\mathcal R_\delta$, where $\sup_{m\in\mathbb Z}\|R(m)-E\|<\delta$, $\delta>0$. For an original system with stable Lyapunov exponents, we prove that the spectral set $\lambda(\mathcal R)$ of class $\mathcal R$ coincides with the set of all ordered ascending sets of $n$ numbers. Moreover, for any $\Delta> 0$ there exists an $\ell=\ell(\Delta)>0$ such that for any $\delta<\Delta$ the spectral set $\lambda(\mathcal R_{\ell\delta})$ contains the $\delta$-neighborhood of the Lyapunov spectrum of the unperturbed system.
Keywords: discrete time-varying linear system, lyapunov exponents, perturbations of coefficients.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00346
Received: 01.02.2016
Bibliographic databases:
Document Type: Article
UDC: 517.929.2
MSC: 39A06, 39A30
Language: Russian
Citation: I. N. Banshchikova, S. N. Popova, “On the spectral set of a linear discrete system with stable Lyapunov exponents”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 26:1 (2016), 15–26
Citation in format AMSBIB
\Bibitem{BanPop16}
\by I.~N.~Banshchikova, S.~N.~Popova
\paper On the spectral set of a~linear discrete system with stable Lyapunov exponents
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2016
\vol 26
\issue 1
\pages 15--26
\mathnet{http://mi.mathnet.ru/vuu515}
\crossref{https://doi.org/10.20537/vm160102}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3485570}
\elib{https://elibrary.ru/item.asp?id=25681782}
Linking options:
  • https://www.mathnet.ru/eng/vuu515
  • https://www.mathnet.ru/eng/vuu/v26/i1/p15
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:435
    Full-text PDF :184
    References:69
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024