Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 4, Pages 517–525 (Mi vuu505)  

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring

D. A. Tursunova, U. Z. Erkebaevb

a Department of Higher Mathematics, Ural State Pedagogical University, ul. Karl Liebknecht, 9, Yekaterinburg, 620151, Russia
b Department of Algebra and Geometry, Osh State University, ul. Lenina, 331, Osh, 723500, Kyrgyzstan
Full-text PDF (217 kB) Citations (7)
References:
Abstract: The paper refers to the asymptotic behavior of the Dirichlet problem solution for a bisingular perturbed elliptic second-order equation with two independent variables in the ring. To construct the asymptotic expansion of the solution the authors apply the modified scheme of the method of boundary functions by Vishik–Lyusternik–Vasil'eva–Imanaliev. The proposed method differs from the matching method by the fact that growing features of the outer expansion are in fact removed from it and with the help of an auxiliary asymptotic series are placed entirely in the internal expansion, and from the classical method of boundary functions by the fact that boundary functions have power-law decrease, not exponential. An asymptotic expansion of the solution is a series of Puiseux. The resulting asymptotic expansion of the Dirichlet problem solution is justified by the maximum principle.
Keywords: formal asymptotic expansion, dirichlet problem, airy function, Puiseux series, small parameter, method of boundary functions, bisingular perturbation.
Received: 13.10.2015
Bibliographic databases:
Document Type: Article
UDC: 517.955.8
MSC: 35J25, 35J75, 35J15
Language: Russian
Citation: D. A. Tursunov, U. Z. Erkebaev, “Asymptotics of the Dirichlet problem solution for a bisingular perturbed equation in the ring”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:4 (2015), 517–525
Citation in format AMSBIB
\Bibitem{TurErk15}
\by D.~A.~Tursunov, U.~Z.~Erkebaev
\paper Asymptotics of the Dirichlet problem solution for a~bisingular perturbed equation in the ring
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 4
\pages 517--525
\mathnet{http://mi.mathnet.ru/vuu505}
\elib{https://elibrary.ru/item.asp?id=25109972}
Linking options:
  • https://www.mathnet.ru/eng/vuu505
  • https://www.mathnet.ru/eng/vuu/v25/i4/p517
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:369
    Full-text PDF :171
    References:102
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024