Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 2, Pages 184–196 (Mi vuu476)  

MATHEMATICS

Chaotic scattering of the point vortex by falling circular cylinder

S. V. Sokolov, I. S. Koltsov

Institute of Machines Science named after A. A. Blagonravov of the Russian Academy of Sciences, Malyi Khariton'evskii per., 4, Moscow, 101990, Russia
References:
Abstract: We consider a system which consists of a circular cylinder subject to gravity interacting with a point vortex in a perfect fluid. In contrast to previous works, in this paper the circulation about the cylinder is assumed to be zero. The governing equations are Hamiltonian and admit evident integrals of motion: the horizontal and vertical components of the momentum; the latter is obviously non-autonomous. Using autonomous integral we reduce the order of the system by one degree of freedom in a case of zero circulation which early was not considered. Unlike nonzero circulation in the absence of point vortices when the cylinder moves inside a certain horizontal stripe it is shown that in the presence of vortices and with circulation equal to zero a vertical coordinate of the cylinder is unbounded decreasing. We then focus on the numerical study of dynamics of our system. In a case of zero circulation trajectories are noncompact. The different kinds of the scattering function of the vortex by cylinder were obtained. The form of these functions argues to chaotic behavior of the scattering which means that an additional analytical integral is absent.
Keywords: point vortices, rigid body, chaotic scattering, Hamiltonian systems, reduction.
Received: 02.04.2015
Bibliographic databases:
Document Type: Article
UDC: 512.77, 517.912
MSC: 70Hxx, 70G65
Language: Russian
Citation: S. V. Sokolov, I. S. Koltsov, “Chaotic scattering of the point vortex by falling circular cylinder”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 184–196
Citation in format AMSBIB
\Bibitem{SokKol15}
\by S.~V.~Sokolov, I.~S.~Koltsov
\paper Chaotic scattering of the point vortex by falling circular cylinder
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 2
\pages 184--196
\mathnet{http://mi.mathnet.ru/vuu476}
\elib{https://elibrary.ru/item.asp?id=23681101}
Linking options:
  • https://www.mathnet.ru/eng/vuu476
  • https://www.mathnet.ru/eng/vuu/v25/i2/p184
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :184
    References:54
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024