Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 2, Pages 157–179 (Mi vuu474)  

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

Criteria for uniform complete controllability of a linear system

V. A. Zaitsev

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (325 kB) Citations (6)
References:
Abstract: The notion of uniform complete controllability of linear system introduced by R. Kalman plays a key role in problems of control of asymptotic properties for linear systems closed by linear feedback control. E. L. Tonkov has found a necessary and sufficient condition of uniform complete controllability for systems with piecewise continuous and bounded coefficients. The Tonkov criterion can be considered as the definition of uniform complete controllability. If the coefficients of the system satisfy weak conditions then the definitions of Kalman and Tonkov are not coincide. We obtain necessary conditions and sufficient conditions for uniform complete controllability in the sense of Kalman and Tonkov for systems with measurable and locally integrable coefficients. We introduce a new definition of uniform complete controllability that extends the definition of Tonkov and coincides with the definition of Kalman providing the matrix $B(\cdot)$ is bounded. We prove some known results on the controllability of linear systems that allow the weakening of the requirements on the coefficients. We prove that if a linear control system $\dot x=A(t)x+B(t)u$, $x\in\mathbb{R}^n$, $u\in\mathbb{R}^m$, with measurable and bounded matrix $B(\cdot)$ is uniformly completely controllable in the sense of Kalman then for any measurable and integrally bounded $m\times n$-matrix function $Q(\cdot)$ the system $\dot x=(A(t)+B(t)Q(t))x+B(t)u$ is also uniformly completely controllable in the sense of Kalman.
Keywords: linear control system, uniform complete controllability.
Received: 15.03.2015
Bibliographic databases:
Document Type: Article
UDC: 517.977.1, 517.926
MSC: 93B05, 93C05
Language: Russian
Citation: V. A. Zaitsev, “Criteria for uniform complete controllability of a linear system”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:2 (2015), 157–179
Citation in format AMSBIB
\Bibitem{Zai15}
\by V.~A.~Zaitsev
\paper Criteria for uniform complete controllability of a linear system
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 2
\pages 157--179
\mathnet{http://mi.mathnet.ru/vuu474}
\elib{https://elibrary.ru/item.asp?id=23681099}
Linking options:
  • https://www.mathnet.ru/eng/vuu474
  • https://www.mathnet.ru/eng/vuu/v25/i2/p157
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025