Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 1, Pages 71–77 (Mi vuu466)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Cubic forms without monomials in two variables

A. V. Seliverstov

Laboratory 6, Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bol'shoi Karetnyi per., 19, build. 1, Moscow, 127051, Russia
Full-text PDF (197 kB) Citations (3)
References:
Abstract: It is proved that a general cubic form over the field of complex numbers can be transformed into a form without monomials of exactly two variables by means of a non-degenerate linear transformation of coordinates. If the coefficients of monomials in only one variable are equal to one, and the remaining coefficients belong to sufficiently small polydisc near zero, then the transformation can be approximated by iterative algorithm. Under these restrictions the same result holds over the reals. This result generalizes the Levy–Desplanques theorem on strictly diagonally dominant matrices. We discuss in detail the properties of reducible cubic forms. So we prove the existence of a reducible real cubic form that is not equivalent to any form with all monomials in only one variable and without any monomials in exactly two variables. We suggest a sufficient condition for the existence of a singular point on a projective cubic hypersurface. The computational complexity of singular points recognition is discussed.
Keywords: cubic form, linear transformation, singular point.
Funding agency Grant number
Russian Foundation for Basic Research 13--04--40196--Н КОМФИ
Received: 16.01.2015
Bibliographic databases:
Document Type: Article
UDC: 512.647
MSC: 15A69, 14J70, 32S25
Language: Russian
Citation: A. V. Seliverstov, “Cubic forms without monomials in two variables”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:1 (2015), 71–77
Citation in format AMSBIB
\Bibitem{Sel15}
\by A.~V.~Seliverstov
\paper Cubic forms without monomials in two variables
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 1
\pages 71--77
\mathnet{http://mi.mathnet.ru/vuu466}
\elib{https://elibrary.ru/item.asp?id=23142053}
Linking options:
  • https://www.mathnet.ru/eng/vuu466
  • https://www.mathnet.ru/eng/vuu/v25/i1/p71
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025