Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2015, Volume 25, Issue 1, Pages 3–11 (Mi vuu459)  

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

The graph of reflexive-transitive relations and the graph of finite topologies

Kh. Sh. Al' Dzhabriab

a Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
b University of Al-Qadisiyah, ul. Babilon, 29, Al Diwaniyah, Iraq
Full-text PDF (237 kB) Citations (6)
References:
Abstract: Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates on the set $X^2$ a characteristic function: if $(x,y)\in\sigma$, then $\sigma(x,y)=1$, otherwise $\sigma(x,y)=0$. In terms of characteristic functions we introduce on the set of all binary relations of the set $X$ the concept of a binary reflexive relation of adjacency and determine an algebraic system consisting of all binary relations of the set and of all unordered pairs of various adjacent binary relations. If $X$ is a finite set then this algebraic system is a graph (“the graph of graphs”).
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a reflexive-transitive relation if and only if $\tau$ is a reflexive-transitive relation. Several structure features of the graph $G(X)$ of reflexive-transitive relations are investigated. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X$, then the number of connected components is equal to $\sum_{m=1}^nS(n,m)T_0(m-1)$, where $S(n,m)$ are Stirling numbers of second kind. (It is well known that the number of vertices in a graph $G(X)$ is equal to $\sum_{m=1}^nS(n,m)T_0(m)$.)
Keywords: graph, reflexive-transitive relation, finite topology.
Received: 12.11.2014
Bibliographic databases:
Document Type: Article
UDC: 519.175+519.115.5
MSC: 05C30
Language: Russian
Citation: Kh. Sh. Al' Dzhabri, “The graph of reflexive-transitive relations and the graph of finite topologies”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 25:1 (2015), 3–11
Citation in format AMSBIB
\Bibitem{Al 15}
\by Kh.~Sh.~Al' Dzhabri
\paper The graph of reflexive-transitive relations and the graph of finite topologies
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2015
\vol 25
\issue 1
\pages 3--11
\mathnet{http://mi.mathnet.ru/vuu459}
\elib{https://elibrary.ru/item.asp?id=23142044}
Linking options:
  • https://www.mathnet.ru/eng/vuu459
  • https://www.mathnet.ru/eng/vuu/v25/i1/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :205
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025