Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, Issue 3, Pages 75–82 (Mi vuu441)  

This article is cited in 4 scientific papers (total in 4 papers)

MATHEMATICS

Evaluation of the stability of some inverse problems solutions for integro-differential equations

Zh. Sh. Safarov

Tashkent University of Information Technology, pr. Amir Temur, 108, Tashkent, 100202, Uzbekistan
Full-text PDF (197 kB) Citations (4)
References:
Abstract: The paper investigates the stability of inverse problems solutions for two integro-differential hyperbolic equations. Theorems of existence and uniqueness of these solutions (in the small) have been obtained and published earlier by author. Thus only stability problems of these solutions are considered in this paper. In Theorem 1 we prove conditional stability of the solution of the following inverse problem: determine the kernel of the integral for integro-differential equation
$$ u_{tt}=u_{xx}-\int_0^tk(\tau)u(x,t-\tau)\,d\tau,\qquad (x,t)\in\mathbb R\times\mathbb R_+, $$
with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta(x)$, and additional information about the direct problem solution $u(0,t)=f_1(t)$, $u_x(0,t)=f_2(t)$. The inverse problem is replaced by an equivalent system of integral equations for the unknown functions. To prove the theorem the method of successive approximations is used. Next, the method of estimating the integral equations and Gronwall's inequality are used.
In a similar manner we prove Theorem 2. It is devoted to estimating the conditional stability of the solution of kernel determination problem for the same integro-differential equation in a bounded domain with respect to $x$, $x\in(0,l)$, with initial data $u\big|_{t=0}=0$, $u_t\big|_{t=0}=\delta'(x)$, and boundary conditions $(u_x-hu)\big|_{x=0}=0$, $(u_x+Hu)\big|_{x=l}=0$, $t>0$. In this case the additional information about the direct problem solution is given as $u(0,t)=f(t)$, $t\geqslant0$. Here $h$ and $H$ are finite real numbers.
Keywords: integro-differential equation, inverse problem, stability, delta function, kernel.
Received: 20.05.2014
Document Type: Article
UDC: 517.958
MSC: 35L70, 58J45
Language: Russian
Citation: Zh. Sh. Safarov, “Evaluation of the stability of some inverse problems solutions for integro-differential equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3, 75–82
Citation in format AMSBIB
\Bibitem{Saf14}
\by Zh.~Sh.~Safarov
\paper Evaluation of the stability of some inverse problems solutions for integro-differential equations
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 3
\pages 75--82
\mathnet{http://mi.mathnet.ru/vuu441}
Linking options:
  • https://www.mathnet.ru/eng/vuu441
  • https://www.mathnet.ru/eng/vuu/y2014/i3/p75
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:295
    Full-text PDF :164
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024