Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, Issue 3, Pages 59–74 (Mi vuu440)  

MATHEMATICS

Grid methods of solving advection equations with delay

V. G. Pimenov, S. V. Sviridov

Department of Computational Mathematics, Ural Federal University, pr. Lenina, 51, Yekaterinburg, 620000, Russia
References:
Abstract: We consider a first-order partial differential equation with heredity effect
$$ \frac{\partial u(x,t)}{\partial t}+a\frac{\partial u(x,t)}{\partial x}=f(x,t,u(x,t),u_t(x,\cdot)),\quad u_t(x,\cdot)=\{u(x,t+s),\ -\tau\leqslant s<0\}. $$
For such an equation we construct grid methods using the principle of separation of finite-dimensional and infinite-dimensional state components. These grid methods are: analog of running schemes family, analog of Crank–Nicolson scheme, an approximation method to the middle of the square. The one-dimensional and double piecewise linear interpolation and the extrapolation by continuation are applied in order to account the effect of heredity. It is shown that the considered methods have orders of a local error: $O(h+\Delta)$, $O(h+\Delta^2)$ and $O(h^2+\Delta^2)$ respectively, where $h$ is the spatial discretization interval, $\Delta$ is the time discretization interval. Properties of double piecewise linear interpolation are investigated. Using the results of the general theory of differential schemes, stability conditions of the proposed methods are established. Including them in the general scheme of numerical methods for the functional-differential equations, theorems of orders of proposed algorithms convergence are received. Test examples comparing errors of methods are given.
Keywords: advection equation, delay, grid schemes, interpolation, extrapolation, stability, convergence order.
Received: 03.06.2014
Document Type: Article
UDC: 519.63
MSC: 65M12
Language: Russian
Citation: V. G. Pimenov, S. V. Sviridov, “Grid methods of solving advection equations with delay”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3, 59–74
Citation in format AMSBIB
\Bibitem{PimSvi14}
\by V.~G.~Pimenov, S.~V.~Sviridov
\paper Grid methods of solving advection equations with delay
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 3
\pages 59--74
\mathnet{http://mi.mathnet.ru/vuu440}
Linking options:
  • https://www.mathnet.ru/eng/vuu440
  • https://www.mathnet.ru/eng/vuu/y2014/i3/p59
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :242
    References:85
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024