Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, Issue 2, Pages 29–42 (Mi vuu425)  

MATHEMATICS

On deterministic approach to solution of stochastic optimal control problem with controlled diffusion

N. S. Ismagilov

Department of Mathematics, Ufa State Aviation Technical University, ul. K. Marksa, 12, Ufa, 450000, Russia
References:
Abstract: We consider an optimal control problem for a one-dimensional process driven by stochastic differential equation, which has both drift and diffusion coefficients controlled, diffusion being linear in control
\begin{equation} dx(t) = b(t,x(t),u(t))\,dt + \sigma(t,x(t))u(t)\,dW(t), \quad x(0) = x_0, \nonumber \end{equation}
where $x(t)$ is the state variable, $u(t)$ is the control variable and $W(t)$ is the Wiener process. We prove a theorem which gives a structure of solution for the considered differential equation as a superposition of functions $x(t) = \Phi(t,u(t)W(t) + y(t))$, where $\Phi(t,v)$ is the known function, which is completely determined by the diffusion coefficient $\sigma(t,x)$ and is independent of control, and $y(t)$ is the solution to the pathwise-deterministic measure-driven differential equation
\begin{equation} dy(t) = B(t,y(t),u(t))\,dt - W(t)\,du(t). \nonumber \end{equation}
The revealed structure of the solution enables us to consider a new pathwise-deterministic impulsive optimal control problem with the state variable $y(t)$ which is equivalent to the original stochastic optimal control problem. Pathwise problems may have anticipative solutions, so we propose a method that makes it possible to build nonanticipative optimal solutions. The basic idea of the method is to modify cost functional in new pathwise problem with special integral term, which guarantees nonanticipativity of solutions.
Keywords: stochastic optimal control, stochastic differential equations, deterministic approach, pathwise optimization, optimal impulsive control.
Received: 29.10.2013
Document Type: Article
UDC: 519.21, 517.977
Language: Russian
Citation: N. S. Ismagilov, “On deterministic approach to solution of stochastic optimal control problem with controlled diffusion”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 2, 29–42
Citation in format AMSBIB
\Bibitem{Ism14}
\by N.~S.~Ismagilov
\paper On deterministic approach to solution of stochastic optimal control problem with controlled diffusion
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 2
\pages 29--42
\mathnet{http://mi.mathnet.ru/vuu425}
Linking options:
  • https://www.mathnet.ru/eng/vuu425
  • https://www.mathnet.ru/eng/vuu/y2014/i2/p29
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024