Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2014, Issue 1, Pages 46–57 (Mi vuu415)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems

E. K. Makarov

Department of Differential Equations, Institute of Mathematics, National Academy of Sciences of Belarus, ul. Surganova, 11, Minsk, 220072, Belarus
Full-text PDF (236 kB) Citations (1)
References:
Abstract: A number of problems in the Lyapunov exponent theory of linear differential systems
$$ \dot x=A(t)x,\quad x\in\mathbb R^n ,\quad t\geqslant0, $$
can be reduced to an investigation of the influence of coefficient perturbations on characteristic exponents and other asymptotic invariants of perturbed systems
$$ \dot y=A(t)y+Q(t)y,\quad y\in\mathbb R^n,\quad t\geqslant0. $$
Here perturbations are assumed to be in some classes of smallness, i.e. certain subsets of the space $\mathrm{KC}_n(\mathbb R^+)$ of piecewise continuous and bounded on the positive semiaxis $n\times n$-matrices. Commonly used classes of perturbations, such as infinitesimal (vanishing at infinity), exponentially decaying or integrable on the positive semiaxis are defined by specific analytical conditions, but there is no general definition of the smallness class. By analyzing the desirable properties of commonly used classes, we propose an axiomatic definition for this notion, such that most of classes used in the theory of characteristic exponents satisfy this definition. Since the axioms are somewhat cumbersome, for more compact characterization we propose to use the following property of smallness classes: the set of perturbation satisfies the proposed definition if and only if it is a complete matrix algebra over an arbitrary non-trivial ideal of functional ring $\mathrm{KC}_1(\mathbb R^+)$ (with the pointwise multiplication) containing at least one strictly positive function.
Keywords: linear systems, Lyapunov exponents, perturbations.
Received: 20.12.2013
Document Type: Article
UDC: 517.926.4
MSC: 34D08, 34E10
Language: Russian
Citation: E. K. Makarov, “Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 1, 46–57
Citation in format AMSBIB
\Bibitem{Mak14}
\by E.~K.~Makarov
\paper Axiomatic representation for smallness classes of coefficient perturbations to linear differential systems
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2014
\issue 1
\pages 46--57
\mathnet{http://mi.mathnet.ru/vuu415}
Linking options:
  • https://www.mathnet.ru/eng/vuu415
  • https://www.mathnet.ru/eng/vuu/y2014/i1/p46
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025