Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2013, Issue 4, Pages 3–12 (Mi vuu396)  

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

The graph of partial orders

Kh. Sh. Al' Dzhabri, V. I. Rodionov

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia
Full-text PDF (235 kB) Citations (6)
References:
Abstract: Any binary relation $\sigma\subseteq X^2$ (where $X$ is an arbitrary set) generates a characteristic function on the set $X^2$: if $(x,y)\in\sigma$, then $\sigma(x,y)=1$, otherwise $\sigma(x,y)=0$. In terms of characteristic functions on the set of all binary relations of the set $X$ we introduced the concept of a binary reflexive relation of adjacency and determined the algebraic system consisting of all binary relations of a set and of all unordered pairs of various adjacent binary relations. If $X$ is finite set then this algebraic system is a graph (“a graph of graphs”).
It is shown that if $\sigma$ and $\tau$ are adjacent relations then $\sigma$ is a partial order if and only if $\tau$ is a partial order. We investigated some features of the structure of the graph $G(X)$ of partial orders. In particular, if $X$ consists of $n$ elements, and $T_0(n)$ is the number of labeled $T_0$-topologies defined on the set $X$, then the number of vertices in a graph $G(X)$ is $T_0(n)$, and the number of connected components is $T_0(n-1)$.
For any partial order $\sigma$ there is defined the notion of its support set $S(\sigma)$, which is some subset of $X$. If $X$ is finite set, and partial orders $\sigma$ and $\tau$ belong to the same connected component of the graph $G(X)$, then the equality $S(\sigma)=S(\tau)$ holds if and only if $\sigma=\tau$. It is shown that in each connected component of the graph $G(X)$ the union of support sets of its elements is a specific partially ordered set with respect to natural inclusion relation of sets.
Keywords: binary relation, graph, partial order, finite topology.
Received: 13.08.2013
Bibliographic databases:
Document Type: Article
UDC: 519.175+519.115.5
MSC: 05C30
Language: Russian
Citation: Kh. Sh. Al' Dzhabri, V. I. Rodionov, “The graph of partial orders”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2013, no. 4, 3–12
Citation in format AMSBIB
\Bibitem{Al Rod13}
\by Kh.~Sh.~Al' Dzhabri, V.~I.~Rodionov
\paper The graph of partial orders
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2013
\issue 4
\pages 3--12
\mathnet{http://mi.mathnet.ru/vuu396}
\zmath{https://zbmath.org/?q=an:1299.05169}
Linking options:
  • https://www.mathnet.ru/eng/vuu396
  • https://www.mathnet.ru/eng/vuu/y2013/i4/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025