Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, Issue 4, Pages 46–61 (Mi vuu348)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Model of three dimensional double-diffusive convection with cells of an arbitrary shape

S. B. Kozitskii

Pacific Oceanological Institute, Vladivostok, Russia
References:
Abstract: Three-dimensional double-diffusive convection in a horizontally infinite layer of an uncompressible liquid interacting with horizontal vorticity field is considered in the neighborhood of Hopf bifurcation points. A family of amplitude equations for variations of convective cells amplitude is derived by multiple-scaled method. Shape of the cells is given as a superposition of a finite number of convective rolls with different wave vectors.
For numerical simulation of the obtained systems of amplitude equations a few numerical schemes based on modern ETD (exponential time differencing) pseudospectral methods have been developed. The software packages have been written for simulation of roll-type convection and convection with square and hexagonal type cells. Numerical simulation has showed that the convection takes the form of elongated “clouds” or “filaments”. It has been noted that in the system quite rapidly a state of diffusive chaos is developed, where the initial symmetric state is destroyed and the convection becomes irregular both in space and time. At the same time in some areas there are bursts of vorticity.
Keywords: double-diffusive convection, amplitude equation, multiple-scale method.
Received: 16.05.2012
Document Type: Article
UDC: 517.955.8+532.529.2
MSC: 34E13, 76E06, 76R99
Language: Russian
Citation: S. B. Kozitskii, “Model of three dimensional double-diffusive convection with cells of an arbitrary shape”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 46–61
Citation in format AMSBIB
\Bibitem{Koz12}
\by S.~B.~Kozitskii
\paper Model of three dimensional double-diffusive convection with cells of an arbitrary shape
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2012
\issue 4
\pages 46--61
\mathnet{http://mi.mathnet.ru/vuu348}
Linking options:
  • https://www.mathnet.ru/eng/vuu348
  • https://www.mathnet.ru/eng/vuu/y2012/i4/p46
  • This publication is cited in the following 3 articles:
    1. Kozitskiy S.B., “the First 180 Lyapunov Exponents For Two-Dimensional Complex Ginzburg-Landau-Type Equation”, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105172  crossref  mathscinet  zmath  isi  scopus
    2. Kozitskiy S., “Numerical Simulation of Nonstationary Dissipative Structures in 3D Double-Diffusive Convection At Large Rayleigh Numbers”, Ocean Dyn., 68:6 (2018), 713–722  crossref  isi  scopus
    3. A. V. Kazarnikov, S. V. Revina, “Bifurkatsii v sisteme Releya s diffuziei”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 27:4 (2017), 499–514  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:312
    Full-text PDF :166
    References:64
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025