Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, Issue 4, Pages 22–29 (Mi vuu346)  

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On uniform continuous dependence of solution of Cauchy problem on parameter

V. Ya. Derr

Department of Mathematical Analysis, Udmurt State University, Izhevsk, Russia
Full-text PDF (158 kB) Citations (1)
References:
Abstract: We prove that if, in addition to the assumptions that guarantee existence, uniqueness and continuous dependence on parameter $\mu\in\mathcal M$ of solution $x(t,t_0,\mu)$ of a $n$-dimensional Cauchy problem $\frac{dx}{dt}=f(t,x,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $x(t_0)=x^0$ one requires that the family $\{f(t,x,\cdot)\}_{(t,x)}$ is equicontinuous, then the dependence of $x(t,t_0,\mu)$ on parameter $\mu$ in an open $\mathcal M$ is uniformly continuous. Analogous result for a linear $n\times n$-dimensional Cauchy problem $\frac{dX}{dt}=A(t,\mu)X+\Phi(t,\mu)$ $(t\in\mathcal I,\mu\in\mathcal M)$, $X(t_0,\mu)=X^0(\mu)$ is valid under the assumption that the integrals $\int_\mathcal I\|A(t,\mu_1)-A(t,\mu_2)\|\,dt $ and $\int_\mathcal I\|\Phi(t,\mu_1)-\Phi(t,\mu_2)\|\,dt$ are uniformly arbitrarily small, provided that $\|\mu_1-\mu_2\|$, $\mu_1,\mu_2\in\mathcal M$, is sufficiently small.
Keywords: uniformly continuity, equipower continuity.
Received: 11.11.2011
Document Type: Article
UDC: 517.91.4
MSC: 34A12
Language: Russian
Citation: V. Ya. Derr, “On uniform continuous dependence of solution of Cauchy problem on parameter”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 22–29
Citation in format AMSBIB
\Bibitem{Der12}
\by V.~Ya.~Derr
\paper On uniform continuous dependence of solution of Cauchy problem on parameter
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2012
\issue 4
\pages 22--29
\mathnet{http://mi.mathnet.ru/vuu346}
Linking options:
  • https://www.mathnet.ru/eng/vuu346
  • https://www.mathnet.ru/eng/vuu/y2012/i4/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:314
    Full-text PDF :146
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024