Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, Issue 4, Pages 3–21 (Mi vuu345)  

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Recurrent and almost recurrent multivalued maps and their selections. II

L. I. Danilov

Physical–Technical Institute, Ural Branch of the Russian Academy of Sciences, Izhevsk, Russia
Full-text PDF (288 kB) Citations (3)
References:
Abstract: In the paper, we consider the problem of existence of recurrent and almost recurrent selections of multivalued mappings $\mathbb R\ni t\mapsto F(t)\in\operatorname{comp}U$ with nonempty compact sets $F(t)$ in a complete metric space $U$. The set $\operatorname{comp}U$ is equipped with the Hausdorff metric $\mathrm{dist}$. Recurrent and almost recurrent multivalued maps are defined as the functions with values in the metric space $(\operatorname{comp}U,\mathrm{dist})$. It is proved that there are recurrent (almost recurrent) selections of multivalued recurrent (almost recurrent) uniformly absolutely continuous maps. We also consider mappings $\mathbb R\ni t\mapsto F(t)$ with the sets $F(t)$ consisting of a finite number of points (the number depends on the $t\in\mathbb R$). We prove that if such a map is almost recurrent, then it has an almost recurrent selection. A multivalued recurrent mapping $t\mapsto F(t)$ with sets $F(t)$ consisting of at most $n$ points (where $n\in\mathbb N$) has a recurrent selection. If the sets $F(t)$ of a multivalued recurrent (almost recurrent) mapping $t\mapsto F(t)$ consist of $n$ points for all $t\in\mathbb R$, then all $n$ continuous selections of the map $F$ are recurrent (almost recurrent).
Keywords: recurrent function, selection, multivalued mapping.
Received: 17.05.2012
Document Type: Article
UDC: 517.518.6
MSC: 42A75, 54C65
Language: Russian
Citation: L. I. Danilov, “Recurrent and almost recurrent multivalued maps and their selections. II”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 4, 3–21
Citation in format AMSBIB
\Bibitem{Dan12}
\by L.~I.~Danilov
\paper Recurrent and almost recurrent multivalued maps and their selections.~II
\jour Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki
\yr 2012
\issue 4
\pages 3--21
\mathnet{http://mi.mathnet.ru/vuu345}
Linking options:
  • https://www.mathnet.ru/eng/vuu345
  • https://www.mathnet.ru/eng/vuu/y2012/i4/p3
    Cycle of papers
    This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
    Statistics & downloads:
    Abstract page:426
    Full-text PDF :168
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024