|
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2012, Issue 1, Pages 26–31
(Mi vuu307)
|
|
|
|
MATHEMATICS
On the question of extended convexity of Green operator
G. G. Islamov Udmurt State University, Izhevsk, Russia
Abstract:
Let $Q$ be a differential operator of order $m-1$, $2\leqslant m \leqslant n$, for which $(a, b)$ is the interval of nonoscillation, and the Green's operator $G\colon L[a, b]\to W^n[a, b]$ of boundary value problem $Lx=f$, $l_i(x)=0$, $i=1,\dots,n$ has the property of generalized convexity: $QGP>0$ for some linear homeomorphism $P$ of Lebesgue space $L[a,b]$. Under some conditions, we prove, that the perturbed boundary value problem $Lx=PVQx+f$, $l_i(x)=0$, $i=1,\dots,n$ is also uniquely solvable in the Sobolev space $W^n[a,b]$ and the Green's operator $\widehat G$ inherits the property of $G$, that is $Q\widehat GP>0$.
Keywords:
Green's operator, extended convexity.
Received: 01.02.2012
Citation:
G. G. Islamov, “On the question of extended convexity of Green operator”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2012, no. 1, 26–31
Linking options:
https://www.mathnet.ru/eng/vuu307 https://www.mathnet.ru/eng/vuu/y2012/i1/p26
|
Statistics & downloads: |
Abstract page: | 222 | Full-text PDF : | 135 | References: | 36 | First page: | 1 |
|