Vestnik Udmurtskogo Universiteta. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Udmurtskogo Universiteta. Matematika, 2005, Issue 1, Pages 115–122 (Mi vuu231)  

MATHEMATICS

On eigenvalues of the $n$-dimensional discrete Schrödinger operator with a small decreasing potential

L. E. Morozova

Udmurt State University, Izhevsk
Abstract: We consider the n-dimensional discrete Schrödinger operator with a decreasing small potential. We prove that there is eigenvalue of this operator close to each of the points $\pm 4$ — this is the boundary of the essential spectrum — when $n=2$ and potential is non-negative (or non-positive). When $n>2$ there are no eigenvalues of this operator.
Received: 01.10.2004
Document Type: Article
UDC: 517.958:513.145.6
Language: Russian
Citation: L. E. Morozova, “On eigenvalues of the $n$-dimensional discrete Schrödinger operator with a small decreasing potential”, Vestn. Udmurtsk. Univ. Mat., 2005, no. 1, 115–122
Citation in format AMSBIB
\Bibitem{Mor05}
\by L.~E.~Morozova
\paper On eigenvalues of the $n$-dimensional discrete Schr\"odinger operator with a small decreasing potential
\jour Vestn. Udmurtsk. Univ. Mat.
\yr 2005
\issue 1
\pages 115--122
\mathnet{http://mi.mathnet.ru/vuu231}
Linking options:
  • https://www.mathnet.ru/eng/vuu231
  • https://www.mathnet.ru/eng/vuu/y2005/i1/p115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Удмуртского университета. Математика. Механика. Компьютерные науки
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024