|
Vestnik Udmurtskogo Universiteta. Matematika, 2005, Issue 1, Pages 115–122
(Mi vuu231)
|
|
|
|
MATHEMATICS
On eigenvalues of the $n$-dimensional discrete Schrödinger operator with a small decreasing potential
L. E. Morozova Udmurt State University, Izhevsk
Abstract:
We consider the n-dimensional discrete Schrödinger operator with a decreasing small potential. We prove that there is eigenvalue of this operator close to each of the points $\pm 4$ — this is the boundary of the essential spectrum — when $n=2$ and potential is non-negative (or non-positive). When $n>2$ there are no eigenvalues of this operator.
Received: 01.10.2004
Citation:
L. E. Morozova, “On eigenvalues of the $n$-dimensional discrete Schrödinger operator with a small decreasing potential”, Vestn. Udmurtsk. Univ. Mat., 2005, no. 1, 115–122
Linking options:
https://www.mathnet.ru/eng/vuu231 https://www.mathnet.ru/eng/vuu/y2005/i1/p115
|
Statistics & downloads: |
Abstract page: | 111 | Full-text PDF : | 56 | First page: | 1 |
|