|
Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 2010, Issue 2, Pages 67–80
(Mi vuu153)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
MECHANICS
On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres
S. R. Gallyamov, S. A. Mel'chukov Udmurt State University
Abstract:
Three-dimensional lattice points problems for simple cubic lattice and solid spheres in chaotic motion are considered. Additional (to two-exponential scaling) relations between indices are indicated: $2-\alpha-\gamma=\nu$ (or $\nu d-\gamma=\nu$) and $\beta=-2\alpha$. Numerical values of three-dimensional critical indices are defined: $\alpha=-2/11$, $\eta=0,$ $\beta=4/11$, $\nu=8/11$, $\gamma=16/11$ and $\delta=5$.
Keywords:
percolation, critical exponent, lattice, solid sphere.
Received: 09.05.2010
Citation:
S. R. Gallyamov, S. A. Mel'chukov, “On the critical indices in three-dimensional percolation in the problems of lattice points and solid spheres”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2010, no. 2, 67–80
Linking options:
https://www.mathnet.ru/eng/vuu153 https://www.mathnet.ru/eng/vuu/y2010/i2/p67
|
Statistics & downloads: |
Abstract page: | 486 | Full-text PDF : | 308 | References: | 63 | First page: | 1 |
|