Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2023, Issue 3, Pages 77–91
DOI: https://doi.org/10.26456/vtpmk661
(Mi vtpmk661)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computational Mathematics

Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain

M. KH. Beshtokov, Z. V. Beshtokova

Institute of Applied Mathematics and Automation, Nalchik
Full-text PDF (424 kB) Citations (1)
References:
Abstract: Integral-differential parabolic equations are studied in a multidimensional domain with boundary conditions of the first kind. For each problem, a difference scheme is constructed with the order of approximation $O(|h|^2+\tau^{m_\sigma})$, where $m_\sigma = 1$ if $\sigma\neq0.5$ and $m_ \sigma = 2$, if $\sigma=0.5$, an a priori estimate is obtained by the method of energy inequalities for solving the difference problem. The obtained estimates imply the uniqueness and stability of the solution with respect to the right-hand side and initial data, as well as the convergence of the solution of the difference problem to the solution of the corresponding original differential problem at a rate of $O(|h|^2+\tau^2)$ for $\sigma = 0.5$.
Keywords: multidimensional problem, first boundary value problem, parabolic equation, integral equation, difference scheme, a priori estimate, stability and convergence of difference schemes.
Received: 17.03.2023
Revised: 09.07.2023
Bibliographic databases:
Document Type: Article
UDC: 519.64
MSC: 35K20, 45K05, 65N12
Language: Russian
Citation: M. KH. Beshtokov, Z. V. Beshtokova, “Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2023, no. 3, 77–91
Citation in format AMSBIB
\Bibitem{BesBes23}
\by M.~KH.~Beshtokov, Z.~V.~Beshtokova
\paper Stability and convergence of difference schemes approximating the first boundary value problem for integral-differential parabolic equations in a multidimensional domain
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2023
\issue 3
\pages 77--91
\mathnet{http://mi.mathnet.ru/vtpmk661}
\crossref{https://doi.org/10.26456/vtpmk661}
\elib{https://elibrary.ru/item.asp?id=54770339}
Linking options:
  • https://www.mathnet.ru/eng/vtpmk661
  • https://www.mathnet.ru/eng/vtpmk/y2023/i3/p77
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
    Statistics & downloads:
    Abstract page:92
    Full-text PDF :29
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024