Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics], 2020, Issue 1, Pages 60–71
DOI: https://doi.org/10.26456/vtpmk555
(Mi vtpmk555)
 

System Analysis, Control and Data Processing

The Laplace transform of the homogeneous functions in $\mathbb{R}^n$

S. V. Arhipov

Tver State University, Tver
References:
Abstract: In the one-dimensional case the Laplace transform of power functions relates to tabular integrals. The multidimensional analogue of power functions are homogeneous functions $\theta \left(\tau \right)\left|t\right|^{\alpha }$, where $\alpha$ is the degree of homogeneity and $\theta\left(\tau \right) $ is a function on the unit sphere $S^{n-1}$. For the convergence of the integral, it is necessary to consider the region $\gamma$ lying inside some hemisphere. In calculating the Laplace transform of homogeneous functions, it is necessary to derive an explicit representation. This is achieved by using Fourier analysis on the sphere, as well as summing the integrals applying the kernel of the Fourier transform, which allows us to construct a simple analytic continuation of the hypergeometric functions that appear in the calculations. The article obtains the formulas for the Laplace transform of homogeneous functions for which $\theta\left(\tau \right) $ belongs to different functional spaces on the unit sphere with support $\gamma$.
Keywords: multidimensional Laplace transform, homogeneous functions, spherical harmonics, Fourier-Laplace series.
Received: 20.01.2020
Revised: 01.03.2020
Bibliographic databases:
Document Type: Article
UDC: 517.521.5, 517.442
Language: Russian
Citation: S. V. Arhipov, “The Laplace transform of the homogeneous functions in $\mathbb{R}^n$”, Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2020, no. 1, 60–71
Citation in format AMSBIB
\Bibitem{Arh20}
\by S.~V.~Arhipov
\paper The Laplace transform of the homogeneous functions in $\mathbb{R}^n$
\jour Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.]
\yr 2020
\issue 1
\pages 60--71
\mathnet{http://mi.mathnet.ru/vtpmk555}
\crossref{https://doi.org/10.26456/vtpmk555}
\elib{https://elibrary.ru/item.asp?id=42694377}
Linking options:
  • https://www.mathnet.ru/eng/vtpmk555
  • https://www.mathnet.ru/eng/vtpmk/y2020/i1/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics]
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024