Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2022, Number 78, Pages 38–48
DOI: https://doi.org/10.17223/19988621/78/3
(Mi vtgu935)
 

MATHEMATICS

Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups

N. K. Smolentsev

Kemerovo State University, Kemerovo, Russian Federation
References:
Abstract: Left-invariant para-complex structures on six-dimensional nilpotent Lie groups are considered. A complete list of six-dimensional nilpotent Lie groups that admit para-Kähler structures is obtained, explicit expressions for para-complex structures are found, and curvature properties of associated para-Kähler metrics are investigated. It is shown that paracomplex structures are nilpotent and the corresponding para-Kähler metrics are Ricci-flat.
Keywords: six-dimensional nilpotent Lie groups, symplectic Lie groups, para-complex structures, left-invariant para-Kahler structures.
Received: 02.12.2021
Accepted: July 12, 2022
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: N. K. Smolentsev, “Left-invariant para-Kähler structures on six-dimensional nilpotent Lie groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 38–48
Citation in format AMSBIB
\Bibitem{Smo22}
\by N.~K.~Smolentsev
\paper Left-invariant para-K\"ahler structures on six-dimensional nilpotent Lie groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2022
\issue 78
\pages 38--48
\mathnet{http://mi.mathnet.ru/vtgu935}
\crossref{https://doi.org/10.17223/19988621/78/3}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4477264}
Linking options:
  • https://www.mathnet.ru/eng/vtgu935
  • https://www.mathnet.ru/eng/vtgu/y2022/i78/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:54
    Full-text PDF :24
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024