Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2022, Number 78, Pages 22–37
DOI: https://doi.org/10.17223/19988621/78/2
(Mi vtgu934)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the number of eigenvalues of a model operator on a one-dimensional lattice

A. A. Imomova, I. N. Bozorovb, A. M. Hurramovb

a Karshi state University, Karshi, Uzbekistan
b Samarkand State University, Samarkand, Uzbekistan
References:
Abstract: A model operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, corresponding to the Hamiltonian of a system of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function is considered. The function describes the transfer of a particle from site to sites interacting using a short-range attraction potential $\nu_{\mu}$, $\mu = (\mu_{0},\mu_{1},\mu_{2},\mu_{3}) \in\mathbb{R}_{+}^{4}$. The detailed descriptions of changes in the number of eigenvalues of the energy operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, relative to values of the particle interaction vector $\mu\in\mathbb{R}_{+}^{4}$ and the total quasi-momentum $k\in \mathbb{T}$ of the system of two particles is presented.
Keywords: Schrodinger operator, Hamiltonian of a system of two particles, dispersion relations, one-dimensional lattice, invariant subspaces, eigenvalue, essential spectrum, unitarily equivalent operator, asymptotics for the Fredholm determinant.
Funding agency Grant number
Academy of Sciences of the Republic of Uzbekistan ФЗ-20200929224
This work was supported by the Republic of Uzbekistan, project no. FZ-20200929224.
Received: 24.06.2021
Accepted: July 12, 2022
Bibliographic databases:
Document Type: Article
UDC: 517.984
MSC: 47A15, 47A75, 81Q10
Language: Russian
Citation: A. A. Imomov, I. N. Bozorov, A. M. Hurramov, “On the number of eigenvalues of a model operator on a one-dimensional lattice”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 22–37
Citation in format AMSBIB
\Bibitem{ImoBozHur22}
\by A.~A.~Imomov, I.~N.~Bozorov, A.~M.~Hurramov
\paper On the number of eigenvalues of a model operator on a one-dimensional lattice
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2022
\issue 78
\pages 22--37
\mathnet{http://mi.mathnet.ru/vtgu934}
\crossref{https://doi.org/10.17223/19988621/78/2}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4477263}
Linking options:
  • https://www.mathnet.ru/eng/vtgu934
  • https://www.mathnet.ru/eng/vtgu/y2022/i78/p22
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :41
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024