|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
On the number of eigenvalues of a model operator on a one-dimensional lattice
A. A. Imomova, I. N. Bozorovb, A. M. Hurramovb a Karshi state University, Karshi, Uzbekistan
b Samarkand State University, Samarkand, Uzbekistan
Abstract:
A model operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, corresponding to the Hamiltonian of a system of two arbitrary quantum particles on a one-dimensional lattice with a special dispersion function is considered. The function describes the transfer of a particle from site to sites interacting using a short-range attraction potential $\nu_{\mu}$, $\mu = (\mu_{0},\mu_{1},\mu_{2},\mu_{3}) \in\mathbb{R}_{+}^{4}$. The detailed descriptions of changes in the number of eigenvalues of the energy operator $h_{\mu}(k)$, $k\in(-\pi,\pi]$, relative to values of the particle interaction vector $\mu\in\mathbb{R}_{+}^{4}$ and the total quasi-momentum $k\in \mathbb{T}$ of the system of two particles is presented.
Keywords:
Schrodinger operator, Hamiltonian of a system of two particles, dispersion relations, one-dimensional lattice, invariant subspaces, eigenvalue, essential spectrum, unitarily equivalent operator, asymptotics for the Fredholm determinant.
Received: 24.06.2021 Accepted: July 12, 2022
Citation:
A. A. Imomov, I. N. Bozorov, A. M. Hurramov, “On the number of eigenvalues of a model operator on a one-dimensional lattice”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 78, 22–37
Linking options:
https://www.mathnet.ru/eng/vtgu934 https://www.mathnet.ru/eng/vtgu/y2022/i78/p22
|
Statistics & downloads: |
Abstract page: | 86 | Full-text PDF : | 41 | References: | 18 |
|