Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2022, Number 77, Pages 68–85
DOI: https://doi.org/10.17223/19988621/77/6
(Mi vtgu926)
 

This article is cited in 3 scientific papers (total in 3 papers)

MECHANICS

Inhomogeneous Poiseuille flow

N. V. Burmashevaab, A. V. Dyachkovaba, E. Yu. Prosviryakovab

a Institute of Engineering Science UB RAS, Ekaterinburg, Russian Federation
b Ural Federal University, Ekaterinburg, Russian Federation
References:
Abstract: The paper presents an investigation of the isothermal steady flow of a viscous incompressible fluid in an extended flat layer using hydrodynamic equations.
The bottom of the layer under consideration is limited by a stationary solid hydrophilic surface. At the upper boundary of the layer, the pressure field, which is inhomogeneous in both horizontal coordinates, and the velocity field are specified. These boundary conditions allow one to generalize the classical Poiseuille flow.
The exact solution, satisfying the set boundary value problem, is described by a series of polynomials of different orders. The highest (fifth) degree of the polynomials corresponds to a homogeneous component of the horizontal velocity. Here, the pressure field depends only on the horizontal coordinates; the dependence is linear. The detailed analysis of the velocity field is carried out. The obtained results confirm that the determined exact solution can describe multiple stratification of the velocity field and the corresponding field of tangent stresses.
The analysis of spectral properties of the velocity field is performed for a general case without specifying the values of physical constants that unambiguously identify the studied fluid. Therefore, the presented results are applicable to viscous fluids of various nature.
Keywords: vertically swirling fluid, isothermal flow, inhomogeneous Poiseuille flow, exact solution, Navier-Stokes equations, countercurrent, stagnation point.
Received: 07.07.2021
Accepted: May 19, 2022
Bibliographic databases:
Document Type: Article
UDC: 51-72, 532.5.032, 532.51
Language: Russian
Citation: N. V. Burmasheva, A. V. Dyachkova, E. Yu. Prosviryakov, “Inhomogeneous Poiseuille flow”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2022, no. 77, 68–85
Citation in format AMSBIB
\Bibitem{BurDyaPro22}
\by N.~V.~Burmasheva, A.~V.~Dyachkova, E.~Yu.~Prosviryakov
\paper Inhomogeneous Poiseuille flow
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2022
\issue 77
\pages 68--85
\mathnet{http://mi.mathnet.ru/vtgu926}
\crossref{https://doi.org/10.17223/19988621/77/6}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4464666}
Linking options:
  • https://www.mathnet.ru/eng/vtgu926
  • https://www.mathnet.ru/eng/vtgu/y2022/i77/p68
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :38
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024