|
MATHEMATICS
On asymptotic relations for the critical Galton–Watson process
Kh. E. Kudratova, Ya. M. Khusanbaevb a National University of Uzbekistan, Uzbekistan
b V.I. Romanovskiy Institut of Mathematics, Uzbekistan
Abstract:
Determining the asymptotics of the continuation probability for a Galton–Watson branching process is one of the most important problems in the theory of branching processes. This problem was solved by A.N. Kolmogorov (1938) in the case when the process starts with a single particle, and the classical result is obtained. A similar result for continuous branching processes was proved by B.A. Sevastyanov (1951). The next term in the expansion for continuous branching processes was obtained by V.M. Zolotarev (1957). The next term in the expansion for continuous branching processes in the critical case was obtained by V.P. Chistyakov (1957); the asymptotic expansion in the subcritical case under the condition of finiteness of the k-factorial moment was obtained by R. Mukhamedkhanova (1966). Asymptotic expansions for discrete branching processes in the subcritical and supercritical cases, provided that any m-factorial moment is finite, were obtained by S.V. Nagaev and R. Mukhamedkhanova (1966). In the critical case, the weak convergence of the conditional distribution of the quantity $P(Z(n) > 0)Z(n)$ under the condition $Z(n) > 0$ to the exponential distribution was proved by A.M. Yaglom (1947) for processes starting with a single particle in the case of finiteness of the third moment of the number of generations. Subsequently, Spitzer, Kesten, and Ney (1966) proved this result under the condition that the second moment is finite. A similar result for branching processes with continuous parameters was established by V.M. Zolotarev (1957). In this paper, we study the asymptotics of the probability of continuation of the critical Galton–Watson process, starting with n particles. In addition, we prove an analogue of Yaglom's theorem for critical Galton–Watson processes starting with a random number of particles.
Keywords:
Galton–Watson process, probability of continuation of the process, generating function, Kolmogorov's theorem, Yaglom's theorem.
Received: 25.03.2021
Citation:
Kh. E. Kudratov, Ya. M. Khusanbaev, “On asymptotic relations for the critical Galton–Watson process”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 73, 5–16
Linking options:
https://www.mathnet.ru/eng/vtgu870 https://www.mathnet.ru/eng/vtgu/y2021/i73/p5
|
Statistics & downloads: |
Abstract page: | 88 | Full-text PDF : | 34 | References: | 22 |
|