Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2021, Number 70, Pages 127–142
DOI: https://doi.org/10.17223/19988621/70/11
(Mi vtgu845)
 

This article is cited in 3 scientific papers (total in 3 papers)

MECHANICS

Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load

A. D. Chernyshov, V. V. Goryainov, S. F. Kuznetsov, O. Yu. Nikiforova

Voronezh State University of Engineering Technology, Voronezh, Russian Federation
References:
Abstract: The problem of rectangular membrane deflection under alternating loads is solved in general terms by means of the method of fast expansions. The exact solution is represented by the finite expression borrowed from the theory of fast expansions as a sum of the boundary function and Fourier sine series with two Fourier coefficients taken into account. The obtained exact solution includes free parameters. Changing the values of these parameters, one can derive many new exact solutions.
Obtaining of exact solutions to a problem of the rigidly fixed membrane under two types of loads (dome-shaped and sinusoidal) is shown as an example. Graphs of the dome-shaped and sinusoidal loads on the membrane and the curves of the corresponding deflections and stress components are presented in the paper.
From the analysis of the exact solutions, it is obvious that only when a symmetrical alternating load is used, the membrane maximum deflection is attained in the center of the membrane, and the stresses reach the highest values in the middle of both long sides. In the case of a non-symmetrical load, the maximum stress occurs in the middle of either one of two long sides of the rectangular membrane, and the maximum deflection is found in the central region.
Keywords: membrane deflection, stress components, alternating load, exact solution, Poisson equation, fast expansions.
Received: 28.01.2020
Bibliographic databases:
Document Type: Article
UDC: 539.3+517.95
Language: Russian
Citation: A. D. Chernyshov, V. V. Goryainov, S. F. Kuznetsov, O. Yu. Nikiforova, “Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70, 127–142
Citation in format AMSBIB
\Bibitem{CheGorKuz21}
\by A.~D.~Chernyshov, V.~V.~Goryainov, S.~F.~Kuznetsov, O.~Yu.~Nikiforova
\paper Application of fast expansions to obtain exact solutions to a problem on rectangular membrane deflection under alternating load
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2021
\issue 70
\pages 127--142
\mathnet{http://mi.mathnet.ru/vtgu845}
\crossref{https://doi.org/10.17223/19988621/70/11}
Linking options:
  • https://www.mathnet.ru/eng/vtgu845
  • https://www.mathnet.ru/eng/vtgu/y2021/i70/p127
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:100
    Full-text PDF :177
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024