Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2021, Number 70, Pages 5–15
DOI: https://doi.org/10.17223/19988621/70/1
(Mi vtgu835)
 

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

$\nabla^{N}$-Einstein almost contact metric manifolds

S. V. Galaev

National Research Saratov State University named after G.N. Chernyshevsky, Saratov, Russian Federation
Full-text PDF (454 kB) Citations (6)
References:
Abstract: On an almost contact metric manifold $M$, an $N$-connection $\nabla^{N}$ defined by the pair $(\nabla,N)$, where $\nabla$ is the interior metric connection and $N: TM \to TM$ is an endomorphism of the tangent bundle of the manifold $M$ such that $N\vec\xi=\vec0$, $N(D)\subset D$, is considered. Special attention is paid to the case of a skew-symmetric $N$-connection $\nabla^{N}$, which means that the torsion of an $N$-connection considered as a trivalent covariant tensor is skew-symmetric. Such a connection is uniquely defined and corresponds to the endomorphism $N = 2\psi$, where the endomorphism $\psi$ is defined by the equality $\omega(X,Y)=g(\psi X,Y)$ and is called in this work the second structure endomorphism of an almost contact metric manifold. The notion of a $\nabla^{N}$-Einstein almost contact metric manifold is introduced. For the case $N = 2\psi$, conditions under which almost contact manifolds are $\nabla^{N}$-Einstein manifolds are found.
Keywords: almost contact metric manifold, interior connection, semimetric connection with skew-symmetric torsion, $\nabla^{N}$-Einstein manifold.
Received: 09.10.2020
Bibliographic databases:
Document Type: Article
UDC: 514.76
MSC: 53c15
Language: Russian
Citation: S. V. Galaev, “$\nabla^{N}$-Einstein almost contact metric manifolds”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 70, 5–15
Citation in format AMSBIB
\Bibitem{Gal21}
\by S.~V.~Galaev
\paper $\nabla^{N}$-Einstein almost contact metric manifolds
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2021
\issue 70
\pages 5--15
\mathnet{http://mi.mathnet.ru/vtgu835}
\crossref{https://doi.org/10.17223/19988621/70/1}
\elib{https://elibrary.ru/item.asp?id=45681703}
Linking options:
  • https://www.mathnet.ru/eng/vtgu835
  • https://www.mathnet.ru/eng/vtgu/y2021/i70/p5
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:148
    Full-text PDF :63
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024