Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2021, Number 69, Pages 15–21
DOI: https://doi.org/10.17223/19988621/69/2
(Mi vtgu824)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Congruences of the Fibonacci numbers modulo a prime

V. M. Zyuz'kovab

a Tomsk State University, Tomsk, Russian Federation
b Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russian Federation
Full-text PDF (426 kB) Citations (1)
References:
Abstract: Congruences of the form $F(expr1) \equiv\varepsilon F(expr2) \pmod p$ by prime modulo $p$ are proved, whenever $expr1$ is a polynomial with respect to $p$. The value of $\varepsilon$ equals $1$ or $-1$ and $expr2$ does not contain $p$. An example of such a theorem is as follows: given a polynomial $A(p)$ with integer coefficients $a_{k}, a_{k-1}, \dots , a_{2}, a_{1}, a_{0}$ and with respect to $p$ of form $5t \pm 1$; then, $F(A(p))\equiv F(a_{k} + a_{k-1} + \dots + a_{2} + a_{1} + a_{0}) \pmod p$. In particular, we consider the case when the coefficients of the polynomial expr1 form the Pisano period modulo $p$. To search for existing congruences, experiments were performed in the Wolfram Mathematica system.
Keywords: Fibonacci numbers, rangruences modulo a prime number, Pisano period, Mathematica system.
Received: 06.07.2020
Bibliographic databases:
Document Type: Article
UDC: 511.17
MSC: 11B39, 11A07
Language: Russian
Citation: V. M. Zyuz'kov, “Congruences of the Fibonacci numbers modulo a prime”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 69, 15–21
Citation in format AMSBIB
\Bibitem{Zyu21}
\by V.~M.~Zyuz'kov
\paper Congruences of the Fibonacci numbers modulo a prime
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2021
\issue 69
\pages 15--21
\mathnet{http://mi.mathnet.ru/vtgu824}
\crossref{https://doi.org/10.17223/19988621/69/2}
Linking options:
  • https://www.mathnet.ru/eng/vtgu824
  • https://www.mathnet.ru/eng/vtgu/y2021/i69/p15
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :91
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024