Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2021, Number 69, Pages 5–14
DOI: https://doi.org/10.17223/19988621/69/1
(Mi vtgu823)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Eigenfunction expansions of the magnetic Schrödinger operator in bounded domains

A. R. Alievab, Sh. Sh. Radzhabova

a Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences, Baku city, Azerbaijan
b Azerbaijan State Oil and Industry University, Baku city, Azerbaijan
Full-text PDF (434 kB) Citations (1)
References:
Abstract: In this work, we introduce the magnetic Schrödinger operator corresponding to the generalized Dirichlet problem. We prove its self-adjointness and discreteness of the spectrum in bounded domains in the multidimensional case. We also prove the basis property of its eigenfunctions in the Lebesgue space and in the magnetic Sobolev space. We give a new characteristic of the definition domain of the magnetic Schrödinger operator. We investigate the existence and uniqueness of a solution of the magnetic Schrödinger equation with a spectral parameter. It is proved that if the spectral parameter is different from the eigenvalues, then the first generalized Dirichlet problem has a unique solution. We then find the solvability condition for the generalized Dirichlet problem when the spectral parameter coincides with the eigenvalue of the Schrödinger magnetic operator.
Keywords: magnetic Schrödinger operator, discrete spectrum, eigenvalues and eigenfunctions, eigenfunction expansions, theorems for existence and uniqueness of solutions.
Received: 25.05.2020
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. R. Aliev, Sh. Sh. Radzhabov, “Eigenfunction expansions of the magnetic Schrödinger operator in bounded domains”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2021, no. 69, 5–14
Citation in format AMSBIB
\Bibitem{AliRad21}
\by A.~R.~Aliev, Sh.~Sh.~Radzhabov
\paper Eigenfunction expansions of the magnetic Schr\"odinger operator in bounded domains
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2021
\issue 69
\pages 5--14
\mathnet{http://mi.mathnet.ru/vtgu823}
\crossref{https://doi.org/10.17223/19988621/69/1}
Linking options:
  • https://www.mathnet.ru/eng/vtgu823
  • https://www.mathnet.ru/eng/vtgu/y2021/i69/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:146
    Full-text PDF :62
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024