Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2020, Number 68, Pages 95–105
DOI: https://doi.org/10.17223/19988621/68/9
(Mi vtgu818)
 

This article is cited in 1 scientific paper (total in 1 paper)

MECHANICS

Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines

A. V. Lun-Fua, M. A. Bubenchikova, S. Jambaabc, S. G. Tsydypovd

a Gazprom Transgaz Tomsk Ltd., Tomsk, Russian Federation
b National University of Mongolia, Ulaanbaatar, Mongolia
c Mongolian University of Science and Technology, Ulaanbaatar, Mongolia
d Buryat State University, Ulan-Ude, Russian Federation
Full-text PDF (426 kB) Citations (1)
References:
Abstract: The paper presents a stationary equation for bending deformations of a hollow rod derived by means of variational calculus. Further, the authors introduce into consideration an inertial term as consistent with a standard procedure and obtain the wave equation for pipe bending vibrations. Applying the method of separation of variables, the resulting hyperbolic equation of vibrations is reduced to an ordinary fourth-order differential equation for a standing wave on the axial line of the pipe. Fundamental solutions to the latter equation are referred to as the Krylov functions, while the standing wave is represented as a linear combination of two independent Krylov functions. The solution to the obtained homogeneous equation is only found at certain values of characteristic parameters which are amounted to a countable set for each case of fixed ends of the pipeline segment. Thus, the whole frequency spectrum of the pipe bending vibrations is determined, and the main vibration mode is revealed for each case of fixed pipeline ends.
Keywords: pipeline segment, elastic wave, standing wave of an axial line, frequency spectrum, basic vibration mode.
Received: 11.03.2019
Bibliographic databases:
Document Type: Article
UDC: 534.2
Language: Russian
Citation: A. V. Lun-Fu, M. A. Bubenchikov, S. Jambaa, S. G. Tsydypov, “Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 68, 95–105
Citation in format AMSBIB
\Bibitem{LunBubJam20}
\by A.~V.~Lun-Fu, M.~A.~Bubenchikov, S.~Jambaa, S.~G.~Tsydypov
\paper Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2020
\issue 68
\pages 95--105
\mathnet{http://mi.mathnet.ru/vtgu818}
\crossref{https://doi.org/10.17223/19988621/68/9}
Linking options:
  • https://www.mathnet.ru/eng/vtgu818
  • https://www.mathnet.ru/eng/vtgu/y2020/i68/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:75
    Full-text PDF :40
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024