|
This article is cited in 1 scientific paper (total in 1 paper)
MECHANICS
An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate
M. A. Sumbatyan, Ya. A. Berdnik, A. A. Bondarchuk Southern Federal
University, Rostov-on-Don, Russian Federation
Abstract:
In this paper, the problem on a viscous fluid flow around a thin plate is considered using the exact Navier-Stokes equations. An iterative method is proposed for small velocity perturbations with respect to main flow velocities. At each iterative step, an integral equation is solved for a function of the viscous friction over the plate. The collocation method is used at each iteration step to reduce an integral equation to a system of linear algebraic equations, and the shooting method based on the classical fourth-order Runge-Kutta technique is applied. The solution obtained at each iteration step is compared with the Harrison-Filon solution at low Reynolds numbers, with the classical Blasius solution, and with the results computed using the direct numerical finite-volume method in the ANSYS CFX software for moderate and high Reynolds numbers. The proposed iterative method converges in a few steps. Its accuracy is rather high for small and large Reynolds number, while the error can reach 15% for moderate values.
Keywords:
Navier-Stokes equations, iterative method, viscous fluid, thin plate, integral equations.
Received: 12.06.2019
Citation:
M. A. Sumbatyan, Ya. A. Berdnik, A. A. Bondarchuk, “An iterative method for the Navier-Stokes equations in the problem of a viscous incompressible fluid flow around a thin plate”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 66, 132–142
Linking options:
https://www.mathnet.ru/eng/vtgu795 https://www.mathnet.ru/eng/vtgu/y2020/i66/p132
|
|