Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2020, Number 66, Pages 5–23
DOI: https://doi.org/10.17223/19988621/66/1
(Mi vtgu785)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds

Ahmad Abu-Saleema, A. R. Rustanovb, S. V. Kharitonovac

a Al al-Bayt University, Mafraq, Jordan
b National Research Moscow State University of civil engineering, Institute of fundamental education, Russia
c Orenburg State University, Russia
Full-text PDF (538 kB) Citations (3)
References:
Abstract: In this paper we study generalized Kenmotsu manifolds (shortly, a GK-manifold) that satisfy the axiom of $\Phi$-holomorphic $(2r+1)$-planes. After the preliminaries we give the definition of generalized Kenmotsu manifolds and the full structural equation group. Next, we define $\Phi$-holomorphic generalized Kenmotsu manifolds and $\Phi$-paracontact generalized Kenmotsu manifold give a local characteristic of this subclasses. The $\Phi$-holomorphic generalized Kenmotsu manifold coincides with the class of almost contact metric manifolds obtained from closely cosymplectic manifolds by a canonical concircular transformation of nearly cosymplectic structure. A $\Phi$-paracontact generalized Kenmotsu manifold is a special generalized Kenmotsu manifold of the second kind. An analytical expression is obtained for the tensor of $\Phi$-holomorphic sectional curvature of generalized Kenmotsu manifolds of the pointwise constant $\Phi$-holomorphic sectional curvature.
Then we study the axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized Kenmotsu manifolds and propose a complete classification of simply connected generalized Kenmotsu manifolds satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes. The main results are as follows. A simply connected GK-manifold of pointwise constant $\Phi$-holomorphic sectional curvature satisfying the axiom of $\Phi$-holomorphic $(2r+1)$-planes is a Kenmotsu manifold. A GK-manifold satisfies the axiom of $\Phi$-holomorphic $(2r+1)$-planes if and only if it is canonically concircular to one of the following manifolds: (1) $\mathbf{CP^n}\times\mathbf{R}$; (2) $\mathbf{C^n}\times\mathbf{R}$; and (3) $\mathbf{CH^n}\times\mathbf{R}$ having the canonical cosymplectic structure.
Keywords: almost contact metric structure, Kentmotsu structure, generalized Kentmotsu manifold, special generalized Kentmotsu manifold, axiom of $\Phi$-holomorphic planes, $\Phi$-quasiinvariant manifold, $\Phi$-paracontact manifold.
Received: 04.10.2019
Bibliographic databases:
Document Type: Article
UDC: 514.76
MSC: 53C25, 53D15
Language: Russian
Citation: Ahmad Abu-Saleem, A. R. Rustanov, S. V. Kharitonova, “Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2020, no. 66, 5–23
Citation in format AMSBIB
\Bibitem{AbuRusKha20}
\by Ahmad~Abu-Saleem, A.~R.~Rustanov, S.~V.~Kharitonova
\paper Axiom of $\Phi$-holomorphic $(2r+1)$-planes for generalized kenmotsu manifolds
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2020
\issue 66
\pages 5--23
\mathnet{http://mi.mathnet.ru/vtgu785}
\crossref{https://doi.org/10.17223/19988621/66/1}
Linking options:
  • https://www.mathnet.ru/eng/vtgu785
  • https://www.mathnet.ru/eng/vtgu/y2020/i66/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :43
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024