Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 60, Pages 42–60
DOI: https://doi.org/10.17223/19988621/60/4
(Mi vtgu721)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons

I. A. Kolesnikov

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (545 kB) Citations (2)
References:
Abstract: The paper solves the problem of constructing conformal mappings from the half-plane onto a periodic polygon. A periodic polygon $\Delta$ is a simply connected domain with symmetry of translation, i.e. it has the property $L(\Delta)=\Delta$, where $L(w)=w+2\pi$. We consider a polygon with a boundary consisting of a countable number of circular arcs. Moreover, it has a unique prime end at infinity, fixed under the shift $L(w)$. We use a Schwarz-type differential equation for the representation of the mapping. There is a classical problem of determining parameters for equations of this type. They are the preimages of polygon's vertices under the mapping and additional accessory parameters. To determine these parameters, we generalize Kufarev's method. It was proposed for solving the problem of finding parameters in the Schwarz–Christoffel integral. The method, based on Loewner's differential equation, reduces the problem to the Cauchy problem for a system of ordinary differential equations. There is a differential equation of the Loewner type for periodic polygon. Separately, we consider periodic polygons that have mirror symmetry with respect to a couple of vertical lines; their boundaries consist of straight line segments. We give an example of mapping of the half-plane onto a specified periodic polygon with a boundary consisting of circular arcs and determine its parameters using Kufarev's method.
Keywords: conformal mapping, Schwarz equation, Schwarz–Christoffel integral, periodic polygon, accessory parameters, Kufarev's method.
Funding agency Grant number
Russian Foundation for Basic Research 18-31-00190\18
This work was supported by RFBR according to the research project № 18-31-00190\18.
Received: 07.02.2019
Bibliographic databases:
Document Type: Article
UDC: 517.54
MSC: 30C20, 30C30
Language: Russian
Citation: I. A. Kolesnikov, “Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 60, 42–60
Citation in format AMSBIB
\Bibitem{Kol19}
\by I.~A.~Kolesnikov
\paper Determining parameters of conformal mappings from the upper halfplane onto straight-line periodic polygons with double symmetry and onto circular periodic polygons
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 60
\pages 42--60
\mathnet{http://mi.mathnet.ru/vtgu721}
\crossref{https://doi.org/10.17223/19988621/60/4}
\elib{https://elibrary.ru/item.asp?id=39386754}
Linking options:
  • https://www.mathnet.ru/eng/vtgu721
  • https://www.mathnet.ru/eng/vtgu/y2019/i60/p42
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :67
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024