Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 60, Pages 5–10
DOI: https://doi.org/10.17223/19988621/60/1
(Mi vtgu718)
 

MATHEMATICS

On zeros of the combination of products of Bessel functions

A. A. Gimaltdinova, E. P. Anosova

Ufa State Petroleum Technological University, Ufa, Russian Federation
References:
Abstract: In this paper, the function $f_\nu(t)=J_\nu(t)I_{-\nu}(t)+I_\nu(t)J_{-\nu}(t)$, $0<\nu<1$, $\mathrm{Re}\,t>0$, is investigated. Such functions were little studied in the literature. It is proved that more general functions $f_{\nu,\mu}^{(1),(2)}(t)=J_\nu(t)I_{-\mu}(t)\pm I_\mu(t)J_{-\nu}(t)$ have a countable set of real zeros and a countable set of pure imaginary zeros. The proof uses the well-known Sturm theorem for second-order differential equations. The statement is applied to specific examples. In the case $\nu=1/2$, the function $f_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)+I_{1/2}(x)J_{-1/2}(x)$ is reduced to an elementary function $f_{1/2}(x)=\frac2{\pi x}(\sin x\cdot\cosh x+\cos x\cdot\sinh x)$, and an asymptotic formula for its positive zeros $x=-\frac\pi4+\pi k+O(e^{-2\pi k})$ is found. Function $\hat{f}_{1/2}(x)=J_{1/2}(x)I_{-1/2}(x)-I_{1/2}(x)J_{-1/2}(x)$ has the following positive zeros: $x=\frac\pi4+\pi k+O(e^{-2\pi k})$.
Keywords: Bessel function, modified Bessel function, set of zeros of the function, Sturm theorem.
Funding agency Grant number
Russian Foundation for Basic Research 17-41-020516_р_а
The work is supported by the Russian Foundation for Basic Research (grant no. 17-41-020516).
Received: 09.10.2018
Bibliographic databases:
Document Type: Article
UDC: 517.584
MSC: 33C10
Language: Russian
Citation: A. A. Gimaltdinova, E. P. Anosova, “On zeros of the combination of products of Bessel functions”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 60, 5–10
Citation in format AMSBIB
\Bibitem{GimAno19}
\by A.~A.~Gimaltdinova, E.~P.~Anosova
\paper On zeros of the combination of products of Bessel functions
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 60
\pages 5--10
\mathnet{http://mi.mathnet.ru/vtgu718}
\crossref{https://doi.org/10.17223/19988621/60/1}
\elib{https://elibrary.ru/item.asp?id=39386751}
Linking options:
  • https://www.mathnet.ru/eng/vtgu718
  • https://www.mathnet.ru/eng/vtgu/y2019/i60/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024