Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 59, Pages 5–10
DOI: https://doi.org/10.17223/19988621/59/1
(Mi vtgu706)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On the standard form for matrices of order two

M. N. Zonov, E. A. Timoshenko

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (406 kB) Citations (1)
References:
Abstract: We establish a criterion for a subring of the field of rational numbers to have a unique standard form (in the sense of Cohn). A similar criterion is obtained for quotient rings of the ring of integers.
Definition 1. Let $R$ be an associative ring with unit, $C \in GL_2(R)$ and
$$ C=\begin{pmatrix}\alpha& 0\\ 0&\beta\end{pmatrix}\begin{pmatrix}a_1& 1\\ -1& 0\end{pmatrix}\begin{pmatrix}a_2& 1\\ -1& 0\end{pmatrix}\dots\begin{pmatrix}a_t& 1\\ -1& 0\end{pmatrix}, $$
where $t \geqslant 0$. Suppose that the following conditions are satisfied:
1) $\alpha$ and $\beta$ are invertible in $R$;
2) if $1 < i < t$, then $a_i$ is a nonzero non-invertible element of $R$;
3) if $t = 2$, then $a_1$ and $a_2$ cannot both be $0$.
Then the above representation is said to be a standard form for $C$.
Definition 2. 1) A ring $R$ is said to have a unique standard form if no matrix $C \in GL_2(R)$ can be represented by two different standard forms.
2) A ring $R$ is said to be quasi-free if the identity matrix $E \in GL_2(R)$ does not possess a nontrivial standard form.
Theorem 5. If a ring $R$ is quasi-free, then for every nonzero non-invertible elements $b$ and $c$ of $R$ the element $bc-1$ is non-invertible in $R$.
Theorem 5 enables us to prove Proposition 7 and Theorem 8.
Proposition 7. Let $R =\mathbf{Z}/n\mathbf{Z}$, where $n > 1$. The following conditions are equivalent:
a) $R$ has a unique standard form;
b) $R$ is quasi-free;
c) $n$ is a prime.
Theorem 8. 1) A subring of the field $\mathbf{Q}$ is quasi-free if and only if it coincides with $\mathbf{Q}$ or with $\mathbf{Z}$. 2) A subring of the field $\mathbf{Q}$ has a unique standard form if and only if it coincides with $\mathbf{Q}$.
Keywords: matrix, standard form, general linear group.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.13557.2019/13.1
The work of the second author was supported by the Ministry of Science and Higher Education of Russia (state assignment No. 1.13557.2019/13.1).
Received: 05.04.2019
Bibliographic databases:
Document Type: Article
UDC: 512.54
MSC: 15A23
Language: Russian
Citation: M. N. Zonov, E. A. Timoshenko, “On the standard form for matrices of order two”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 59, 5–10
Citation in format AMSBIB
\Bibitem{ZonTim19}
\by M.~N.~Zonov, E.~A.~Timoshenko
\paper On the standard form for matrices of order two
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 59
\pages 5--10
\mathnet{http://mi.mathnet.ru/vtgu706}
\crossref{https://doi.org/10.17223/19988621/59/1}
\elib{https://elibrary.ru/item.asp?id=38564897}
Linking options:
  • https://www.mathnet.ru/eng/vtgu706
  • https://www.mathnet.ru/eng/vtgu/y2019/i59/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025