Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2019, Number 58, Pages 32–40
DOI: https://doi.org/10.17223/19988621/58/3
(Mi vtgu697)
 

MATHEMATICS

Canonical system of basic invariants for unitary group $W(K_5)$

O. I. Rudnitskii

Vernadsky Crimean Federal University, Simferopol, Russian Federation
References:
Abstract: For a finite group $G$ generated by reflections in the $n$-dimensional unitary space $U^n$, the algebra $I^G$ of all $G$-invariant polynomials $f(x_1,\dots,x_n)$ is generated by $n$ algebraically independent homogeneous polynomials $f_i\in I^G$ with $\mathrm{deg}\,f_i=m_i$ ($i=\overline{1,n}$); $m_1\leqslant m_2\leqslant\dots\leqslant m_n$ (Shephard G. C., Todd J. A.).
According to Nakashima N., Terao H., and Tsujie S., system $\{f_1,\dots, f_n\}$ of basic invariants of the group $G$ is said to be canonical if it satisfies the following system of partial differential equations:
$$ \overline{f}_i(\partial) f_j=0,\quad i,j=\overline{1,n}\ (i<j), $$
where the differential operator $\overline{f}_i(\partial)$ is obtained from polynomial $f_i$ if each its coefficient is replaced by the complex conjugate and each variable $x_k$ is replaced by $\frac\partial{\partial x_k}$.
In the previous works, the author obtained in an explicit form canonical systems of basic invariants for all finite primitive unitary groups $G$ generated by reflections in unitary spaces of dimensional $2$$3$, and $4$.
In this paper, canonical systems of basic invariants were constructed in an explicit form for unitary groups $W(K_5)$ generated by reflections in space $U^5$.
Keywords: Unitary space, reflection, reflection groups, algebra of invariants, basic invariant, canonical system of basic invariants.
Received: 04.12.2018
Bibliographic databases:
Document Type: Article
UDC: 514.7
MSC: 51F15; 14L24
Language: Russian
Citation: O. I. Rudnitskii, “Canonical system of basic invariants for unitary group $W(K_5)$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2019, no. 58, 32–40
Citation in format AMSBIB
\Bibitem{Rud19}
\by O.~I.~Rudnitskii
\paper Canonical system of basic invariants for unitary group $W(K_5)$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2019
\issue 58
\pages 32--40
\mathnet{http://mi.mathnet.ru/vtgu697}
\crossref{https://doi.org/10.17223/19988621/58/3}
\elib{https://elibrary.ru/item.asp?id=38186992}
Linking options:
  • https://www.mathnet.ru/eng/vtgu697
  • https://www.mathnet.ru/eng/vtgu/y2019/i58/p32
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:111
    Full-text PDF :40
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024