Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 55, Pages 38–44
DOI: https://doi.org/10.17223/19988621/55/4
(Mi vtgu669)
 

MATHEMATICS

The grothendieck group $K_0$ of an arbitrary csp-ring

E. A. Timoshenko

Tomsk State University, Tomsk, Russian Federation
References:
Abstract: Fix an infinite set $L$ of primes. For every $p\in L$, let $R_p$ be either the ring of $p$-adic integers or the residue class ring $\mathbf{Z}/p^k\mathbf{Z}$ (the number $k>0$ may depend on $p$). Define
$$ K=\prod_{p\in L} R_p\text{ and } T=\bigoplus_{p\in L} R_p\subset K; $$
it is clear that $T$ is an ideal of the ring $K$. By a csp-ring we mean any subring $R$ of the ring $K$ such that $T\subset R$ and the quotient ring $R/T$ is a field. The symbol $K_0(R)$ denotes the Grothendieck group of the monoid of isomorphism classes of finitely generated projective modules over $R$ (with direct sum as the operation).
We find necessary and sufficient conditions for a module over $R$ to be a finitely generated projective module. These conditions enable us to prove the following theorem.
Theorem 7. For every csp-ring $R$, the Grothendieck group $K_0(R)$ is a free group of countable rank.
If we have two csp-rings $R$ and $S$, then every ring homomorphism $R\to S$ induces a group homomorphism $K_0(R)\to K_0(S)$. We describe this group homomorphism for arbitrary csp-rings $R$ and $S$.
Keywords: csp-ring, projective module, Grothendieck group.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.12877.2018/12.1
Received: 07.06.2018
Bibliographic databases:
Document Type: Article
UDC: 512.553+512.541
MSC: 19A49, 13D15, 18F30
Language: Russian
Citation: E. A. Timoshenko, “The grothendieck group $K_0$ of an arbitrary csp-ring”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55, 38–44
Citation in format AMSBIB
\Bibitem{Tim18}
\by E.~A.~Timoshenko
\paper The grothendieck group $K_0$ of an arbitrary csp-ring
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 55
\pages 38--44
\mathnet{http://mi.mathnet.ru/vtgu669}
\crossref{https://doi.org/10.17223/19988621/55/4}
\elib{https://elibrary.ru/item.asp?id=36387801}
Linking options:
  • https://www.mathnet.ru/eng/vtgu669
  • https://www.mathnet.ru/eng/vtgu/y2018/i55/p38
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:187
    Full-text PDF :60
    References:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024