Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 55, Pages 5–11
DOI: https://doi.org/10.17223/19988621/55/1
(Mi vtgu666)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On the set $K_3(G)$ of finite groups elements commuting exactly with three elements

A. I. Zabarina, E. A. Fomina

Tomsk State Pedagogical University, Tomsk, Russian Federation
Full-text PDF (436 kB) Citations (3)
References:
Abstract: Let $G$ be an arbitrary finite multiplicative group, $|G| = n$. We define the set $K_3(G)$ as follows:
$$ K_3(G) = \{x \in G \mid |C_G(x)| = 3\} = \{x \in G \mid C_G(x) = \{e, x, x^2\}\}. $$
It follows from the definition of $K_3(G)$ that
A) if $x \in K_3(G)$, then the order of $x$ is $3$ ($o(x) = 3$);
B) if $x \in K_3(G)$, then $x^2 \in K_3(G)$.
The following properties of the set $K_3(G)$ have been proved.
Proposition 1. If $K_3(G) \ne\varnothing$, then $|G| \,\vdots\, 3$ and $|G| \not\,\vdots\, 9$.
Proposition 2. If $x \in K_3(G)$, then $x^g \in K_3(G)$ for each $g \in G$.
Proposition 3. Let $K_3(G) \ne\varnothing$, $x \in G$ and $o(x) = 3$. Then $x \in K_3(G)$.
Proposition 4. Let $|G| = n; K_3(G) \ne\varnothing$. Then $|K_3(G)| \in \left\{\frac n3;\frac{2n}3\right\}$.
Lemma 5. Let $a, g \in G$, $o(a) = 3$; $g^{-1}ag = a^2$. Then $o(g)\,\vdots\, 2$.
Proposition 6. 1) Let $o(a) = 3$ and $g^{-1}ag = a^2$. Then $|G|\,\vdots\, 6$.
2) If $|G| = 2k + 1$, then $K_3(G) = \varnothing$ or $|K_3 (G)| =\frac{2|G|}3$.
Theorem 7. Let $G$ be a finite simple group, $|G| = n$, $K_3(G) \ne\varnothing$. Then all involutions of the group $G$ form a class of conjugate elements.
Keywords: group, involution, center of a group, normal subgroup.
Received: 06.03.2018
Bibliographic databases:
Document Type: Article
UDC: 512.543
MSC: 20D99
Language: Russian
Citation: A. I. Zabarina, E. A. Fomina, “On the set $K_3(G)$ of finite groups elements commuting exactly with three elements”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 55, 5–11
Citation in format AMSBIB
\Bibitem{ZabFom18}
\by A.~I.~Zabarina, E.~A.~Fomina
\paper On the set $K_3(G)$ of finite groups elements commuting exactly with three elements
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 55
\pages 5--11
\mathnet{http://mi.mathnet.ru/vtgu666}
\crossref{https://doi.org/10.17223/19988621/55/1}
\elib{https://elibrary.ru/item.asp?id=36387798}
Linking options:
  • https://www.mathnet.ru/eng/vtgu666
  • https://www.mathnet.ru/eng/vtgu/y2018/i55/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024