Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 54, Pages 34–45
DOI: https://doi.org/10.17223/19988621/54/3
(Mi vtgu658)
 

MATHEMATICS

Associated left-invariant contact metric structures on the $7$-dimensional Heisenberg group $H^7$

Ya. V. Slavolyubova

Kemerovo Institute (branch) of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
References:
Abstract: In this paper, we construct new nonstandard associated left-invariant contact metric structures $(\eta,\xi,\varphi,g_\lambda)$ on the $7$-dimensional Heisenberg group $H^7$.
The associated left-invariant contact metric structures for the contact structure $\eta$ on the contact Lie group $(H^7,\eta)$ were given by the affinor $\varphi$ and the (pseudo-)Riemannian metric $g_\lambda$ such that
\begin{gather} \varphi\mid_{\mathrm{ker}\,\eta}=J,\quad \varphi(\xi)=0, \notag\\ g_\lambda(X,Y)=d\eta(\varphi X,Y)+\lambda\eta(X)\eta(Y), \end{gather}
where $J$ is an almost complex structure compatible with the restriction of $g_\lambda$ on $\mathrm{ker}\,\eta$, $g_\lambda\mid_{\mathrm{ker}\,\eta}$.
The parameter $\lambda$ provided deformation of the associated metric $g_\lambda$ along the Reeb field $\xi$.
The affinor $\varphi_0=\begin{pmatrix}J_0&0\\0&0\end{pmatrix}$ and the metric $g_0=\begin{pmatrix}I&0\\0&\lambda\end{pmatrix}$ are fixed. The new affinors $\varphi=\varphi_0(Id+P)(Id-P)^{-1}$ are given by an operator $P:L(H^7)\to L(H^7)$ such that $P(\xi)=0$ and $P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}A&B&D\\ B&C&F\\ D&F&N\end{pmatrix}$, where $A=\begin{pmatrix}u&v\\ v&-u\end{pmatrix}$, $B=\begin{pmatrix}s&t\\ t&-s\end{pmatrix}$, $C=\begin{pmatrix}k& l\\ l& -k\end{pmatrix}$, $D=\begin{pmatrix}x & y\\ y& -x\end{pmatrix}$, $F=\begin{pmatrix}q& r\\ r& -q\end{pmatrix}$, and $N=\begin{pmatrix}w& z\\ z& -w\end{pmatrix}$ are symmetric matrices; $u, v, s, t, k, l, x, y, q, r, w$, and $z$ are real parameters.
Each new affinor $\varphi$ defines a new associated metric $g_\lambda$ by formula (1).
We have considered some particular classes of associated metrics corresponding to the affinors $\varphi$ which were given by the operators $P$ of the following types
$$ P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&B&0\\ B&0&0\\ 0&0&0\end{pmatrix}, P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&0& D\\ 0&0&0\\ D&0&0\end{pmatrix}, P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&0&0\\ 0&0& F\\ 0&F&0\end{pmatrix}, P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}A&0&0\\ 0&C&0\\ 0&0& N\end{pmatrix}. $$

The following theorem was received for any associated (pseudo-)Riemannian metric $g_\lambda(X,Y)=d\eta(\varphi X,Y)+\lambda\eta(X)\eta(Y)$.
Theorem 1. Any left-invariant contact metric structure $(\eta,\xi,\varphi,g_\lambda)$ on the Heisenberg group $H^7$ is a Sasaki, $K$-contact, and $\eta$-Einstein structure.
The squares of the norms of a Riemann tensor $R$ and Ricci tensor $Ric(X,Y)=g_\lambda(A_{Ric}X,Y)$ of associated left-invariant metric $g_\lambda$ have the following expressions: $||R||^2=\frac{69\lambda^2}4$, $||Ric||^2=\frac{15\lambda^2}4$.
The Ricci operator has the following matrix:
$$ A_{Ric}=\begin{pmatrix}-\frac\lambda2& 0&0&0&0&0&0\\ 0&-\frac\lambda2&0&0&0&0&0\\ 0&0&-\frac\lambda2&0&0&0&0\\ 0&0&0&-\frac\lambda2&0&0&0\\ 0&0&0&0&-\frac\lambda2&0&0\\ 0&0&0&0&0&-\frac\lambda2&0\\ 0&0&0&0&0&0&-\frac\lambda2\end{pmatrix}. $$

The sign of the scalar curvature of associated left-invariant metric $g_\lambda$ is not constant and $S=-\frac{3\lambda}2$.
In addition, the following theorem has been proved for any $(2n+1)$-dimensional Heisenberg group $H^{2n+1}$ with a given (pseudo-)Riemannian metric $g_0=e_1^{^*2}+\dots+e_{2n}^{^*2}+\lambda e_{2n+1}^{^*2}$.
Theorem 2. A left-invariant contact metric structure $(\eta,\xi,\varphi_0,g_0)$ on the Heisenberg group $H^{2n+1}$ is $\eta$-Einstein, and $Ric_{g_0}(X,Y)=-\frac\lambda2g_0(X,Y)+\frac{(n+\lambda)\lambda}2\eta(X)\eta(Y)$, $X,Y\in L(H^{2n+1})$.
Keywords: Lie group, contact metric structures, associated metric.
Received: 27.02.2018
Bibliographic databases:
Document Type: Article
UDC: 514.76
MSC: 53D10
Language: Russian
Citation: Ya. V. Slavolyubova, “Associated left-invariant contact metric structures on the $7$-dimensional Heisenberg group $H^7$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 54, 34–45
Citation in format AMSBIB
\Bibitem{Sla18}
\by Ya.~V.~Slavolyubova
\paper Associated left-invariant contact metric structures on the $7$-dimensional Heisenberg group~$H^7$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 54
\pages 34--45
\mathnet{http://mi.mathnet.ru/vtgu658}
\crossref{https://doi.org/10.17223/19988621/54/3}
\elib{https://elibrary.ru/item.asp?id=35424224}
Linking options:
  • https://www.mathnet.ru/eng/vtgu658
  • https://www.mathnet.ru/eng/vtgu/y2018/i54/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :50
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024