Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 54, Pages 17–33
DOI: https://doi.org/10.17223/19988621/54/2
(Mi vtgu657)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On optimality of singular controls in an optimal control problem

K. B. Mansimovab, Sh. M. Rasulovab

a Baku State University, Baku, Azerbaijan
b Institute of Control Problems of the Azerbaijan National Academy of Sciences, Baku, Azerbaijan
Full-text PDF (446 kB) Citations (1)
References:
Abstract: In this paper, a Moskalenko type optimal control problem is considered. We consider the optimal control problem of minimizing the terminal type functional
$$ \mathrm{S(u,v)}=\varphi(y(x_1))+\int_{x_0}^{x_1}G(x,z(t_1,x))dx, $$
under constraints
\begin{gather*} u(t,x)\in U\subset R^r, \quad (t,x)\in D=[t_0,t_1]\times[x_0,x_1],\\ v(x)\in V\subset R^q,\quad x\in X=[x_0,x_1],\\ z_t(t,x)=f(t,x,z(t,x),u(t,x)),\quad (t,x)\in D,\\ z(t_0,x)=y(x),\quad x\in X,\\ y(x_0)=y_0. \end{gather*}

Here, $f (t,x,z,u)$ ($g (x,y,v)$) is an $n$-dimensional vector function which is continuous on the set of variables, together with partial derivatives with respect to $z (y)$ up to second order, $t_0, t_1, x_0, x_1$ ($t_0<t_1$, $x_0<x_1$) are given, $\varphi(y)$ ($G(x,z)$) is a given twice continuously differentiable with respect to $y(z)$ scalar function, $U (V)$ is a given nonempty bounded set, and $u(t, x)$ is an $r$-dimensional control vector function piecewise continuous with respect to $t$ and continuous with respect to $x$, $v(x)$ is a $q$-dimensional piecewise continuous vector of control actions.
The necessary optimality conditions for singular controls in the sense of the Pontryagin maximum principle have been obtained.
Keywords: Pontryagin maximum principle, necessary condition for optimality of singular controls, formula of increment.
Received: 07.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
MSC: 49K20
Language: Russian
Citation: K. B. Mansimov, Sh. M. Rasulova, “On optimality of singular controls in an optimal control problem”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 54, 17–33
Citation in format AMSBIB
\Bibitem{ManRas18}
\by K.~B.~Mansimov, Sh.~M.~Rasulova
\paper On optimality of singular controls in an optimal control problem
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 54
\pages 17--33
\mathnet{http://mi.mathnet.ru/vtgu657}
\crossref{https://doi.org/10.17223/19988621/54/2}
\elib{https://elibrary.ru/item.asp?id=35424223}
Linking options:
  • https://www.mathnet.ru/eng/vtgu657
  • https://www.mathnet.ru/eng/vtgu/y2018/i54/p17
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:188
    Full-text PDF :77
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024