Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 54, Pages 5–16
DOI: https://doi.org/10.17223/19988621/54/1
(Mi vtgu656)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

Reduction of the acoustic inverse problem to an optimal control problem and its investigation

G. F. Guliyeva, V. N. Nasibzadehb

a Baku State University, Baku, Azerbaijan
b Sumgait State University, Sumgait, Azerbaijan
Full-text PDF (459 kB) Citations (3)
References:
Abstract: In this paper, the coefficient inverse problem for the one-dimensional acoustic equation is considered. The problem is reduced to an optimal control problem. In the new problem, the existence theorems are proved, necessary conditions of optimality are derived, differentiability of the functional is shown, and an iteration algorithm for finding the solution of the optimal control problem based on the gradient projection method is proposed.
We consider the problem of determining a pair of functions $(u (x,t),\upsilon(x))$ under constraints
\begin{gather} \frac{\partial^2u}{\partial t^2}-\frac{\partial^2u}{\partial x^2}+\upsilon(x)\frac{\partial u}{\partial x}=f(x,t),\quad (x,t)\in\mathcal{Q}\equiv(0,\ell)\times(0,T),\\ u(x,0)=u_0(x), \frac{\partial u(x,0)}{\partial t}=u_1(x), \quad 0\leqslant x\leqslant\ell,\\ \frac{\partial u}{\partial x}\mid_{x=0}=0, \frac{\partial u}{\partial x}\mid_{x=\ell}=0, \quad 0\leqslant t\leqslant T,\\ u(x,T)=g(x), \quad 0\leqslant x\leqslant\ell,\notag \end{gather}
here, $f\in L_2(\mathcal{Q})$, $u_0\in W_2^1[0,\ell]$, $u_1\in L_2(0,\ell)$, $g\in W_2^1[0,\ell]$ — are given functions.
This problem is reduced to the following optimal control problem: find a function belonging to the set
\begin{equation} V=\left\{\upsilon(x)\in \overset{0}{W_2^1}[0,\ell]: |\upsilon(x)|\leqslant M_1, |\upsilon'(x)|\leqslant M_2 \text{ a.e.on }[0,\ell]\right\}, \end{equation}
and minimizing the functional
\begin{equation} J(\upsilon)=\frac12\int_0^\ell[u(x, T;\upsilon)-g(x)]^2dx \end{equation}
under constraints (1)–(3), where $u(x,t;\upsilon)$ is a solution of problem (1)–(3) at a given $\upsilon(x)$, which is called a control. The solvability of problem (1)–(3), (4), (5) is proved.
Then, the differential of the functional is calculated and the following theorem is proved.
Theorem. Under the conditions considered above, the inequality
$$ \int_{\mathcal{Q}}\frac{\partial u_*(x,t)}{\partial x}\psi_*(x,t)(\upsilon(x)-\upsilon_*(x))dxdt\geqslant 0 $$
where $\psi_*(x,t)$ is solution of the adjoint problem corresponding to the control $\upsilon_*=\upsilon_*(x)$:
\begin{gather*} \frac{\partial^2\psi}{\partial t^2}-\frac{\partial^2\psi}{\partial x^2}-\frac{\partial}{\partial x}(\upsilon\psi)=0, \quad (x,t)\in\mathcal{Q},\\ \psi\mid_{t=T}=0, \quad \frac{\partial\psi}{\partial t}\mid_{t=T}=u(x,T;\upsilon)-g(x), \quad 0\leqslant x\leqslant\ell,\\ \frac{\partial\psi}{\partial x}\mid_{x=0}=0, \quad\frac{\partial\psi}{\partial x}\mid_{x=\ell}=0, \quad 0\leqslant t\leqslant T \end{gather*}
is a necessary condition for optimality of the control $\upsilon_*=\upsilon_*(x)\in V$ of the problem (1)–(3), (4), (5) if it is fulfilled for all $v\in V$.
Keywords: coefficient inverse problem, optimal control, necessary conditions, gradient of the functional.
Received: 12.01.2018
Bibliographic databases:
Document Type: Article
UDC: 517.97
MSC: 35L20, 49K20
Language: Russian
Citation: G. F. Guliyev, V. N. Nasibzadeh, “Reduction of the acoustic inverse problem to an optimal control problem and its investigation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 54, 5–16
Citation in format AMSBIB
\Bibitem{KulNas18}
\by G.~F.~Guliyev, V.~N.~Nasibzadeh
\paper Reduction of the acoustic inverse problem to an optimal control problem and its investigation
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 54
\pages 5--16
\mathnet{http://mi.mathnet.ru/vtgu656}
\crossref{https://doi.org/10.17223/19988621/54/1}
\elib{https://elibrary.ru/item.asp?id=35424222}
Linking options:
  • https://www.mathnet.ru/eng/vtgu656
  • https://www.mathnet.ru/eng/vtgu/y2018/i54/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :85
    References:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024