Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 53, Pages 39–46
DOI: https://doi.org/10.17223/19988621/53/4
(Mi vtgu648)
 

MATHEMATICS

On first Baire class functions defined on some classes of nonmetrizable spaces

E. S. Sukhachevaab

a Département de Mathématiques, Université de Rouen, UMR CNRS 6085, Avenue de l'Universite, BP.12, F76801 Saint-Etienne-du-Rouvray, France
b Tomsk State University, Tomsk, Russian Federation
References:
Abstract: For first Baire class functions given on Polish spaces, Baire's and Lebesgue's criteria are known. We prove analogs of these theorems for topological spaces that are both hereditarily Lindelöf and hereditarily Baire spaces.
An analogue of Lebesgue's theorem is as follows: let a space $X$ be a hereditarily Lindelöf space and a function $f: X\to\mathbb{R}$. A function $f$ is a first Baire class function if and only if the inverse image of an open set in $\mathbb{R}$ has type $F_\sigma$.
The necessity of the following theorem is true for hereditarily Baire spaces and the proof uses the concept of cliquish functions. We affirm that sufficiency is true for hereditarily Lindelöf spaces.
An analogue of Baire's theorem is as follows: let $X$ be a hereditarily Lindelöf and hereditarily Baire space. A function $f: X\to\mathbb{R}$ belongs to the set of first Baire class functions if and only if for any non-empty closed subset $F$ the function $f\mid_F$ has a point of continuity.
For a subset $A$ of the real line $\mathbb{R}$, a modification of the Sorgenfrey line $S$ denoted as $S_A$ is defined as follows: neighborhoods of points from $A$ are given by neighborhoods of the right half-open topology, and those in the complement of $A$ are given by neighborhoods of the left half-open topology. For a subset $A$ of the real line $\mathbb{R}$, a Hattori space denoted as $H(A)$ is defined as follows: neighborhoods of points from $A$ are given by usual Euclidean neighborhoods and those in the complement of $A$ are given by neighborhoods of the right half-open topology. In particular, spaces $S=S_\varnothing$, $S_A$, and $H(A)$ satisfy the conditions of the previous two theorems.
Keywords: Sorgenfrey line, function of the first Baire class, hereditarily Baire space, hereditarily Lindelöf space, cliquish function, $F_\sigma$ and $G_\delta$ sets.
Funding agency Grant number
Russian Foundation for Basic Research 17-51-18051_Болг_а
Received: 13.04.2018
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: E. S. Sukhacheva, “On first Baire class functions defined on some classes of nonmetrizable spaces”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53, 39–46
Citation in format AMSBIB
\Bibitem{Suk18}
\by E.~S.~Sukhacheva
\paper On first Baire class functions defined on some classes of nonmetrizable spaces
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 53
\pages 39--46
\mathnet{http://mi.mathnet.ru/vtgu648}
\crossref{https://doi.org/10.17223/19988621/53/4}
\elib{https://elibrary.ru/item.asp?id=35122604}
Linking options:
  • https://www.mathnet.ru/eng/vtgu648
  • https://www.mathnet.ru/eng/vtgu/y2018/i53/p39
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:242
    Full-text PDF :78
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024