Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2018, Number 53, Pages 22–38
DOI: https://doi.org/10.17223/19988621/53/3
(Mi vtgu647)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$

N. K. Smolentsev

Kemerovo State University, Kemerovo, Russian Federation
Full-text PDF (566 kB) Citations (2)
References:
Abstract: It is well known that almost complex structures exist on the six-dimensional sphere $\mathbf{S}^6$ but the question of the existence of complex (ie, integrable) structures has not been solved so far. The most known almost complex structure on the sphere $\mathbf{S}^6$ is the Cayley structure which is obtained by means of the vector product in the space $\mathbf{R}^7$ of the purely imaginary octaves of Cayley $\mathbf{Ca}$. There is another, split Cayley algebra $\mathbf{Ca'}$, which has a pseudo-Euclidean scalar product of signature $(4,4)$. The space of purely imaginary split octonions is the pseudo-Euclidean space $\mathbf{R}^{3,4}$ with a vector product. In the space $\mathbf{R}^{3,4}$, there are two types of spheres: pseudospheres $\mathbf{S}^{2,4}$ of real radius and pseudo sphere $\mathbf{S}^{3,3}$ of imaginary radius. In this paper, we study the Cayley structures on these pseudo-Riemannian spheres. On the first sphere $\mathbf{S}^{2,4}$, the Cayley structure defines an orthogonal almost complex structure $J$; on the second sphere, $\mathbf{S}^{3,3}$, the Cayley structure defines an almost para-complex structure $P$. It is shown that $J$ and $P$ are nonintegrable. The main characteristics of the structures $J$ and $P$ are calculated: the Nijenhuis tensors, as well as fundamental forms and their differentials. It is shown that, in contrast to the usual Riemann sphere $\mathbf{S}^6$, there are (integrable) complex structures on $\mathbf{S}^{2,4}$ and para-complex structures on $\mathbf{S}^{3,3}$.
Keywords: Cayley algebra, split Cayley algebra, $G2$ group, split-octonions, vector product, almost complex structure, almost para-complex structure, six-dimensional pseudo-Riemannian spheres.
Received: 14.02.2018
Bibliographic databases:
Document Type: Article
UDC: 514.76
Language: Russian
Citation: N. K. Smolentsev, “On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018, no. 53, 22–38
Citation in format AMSBIB
\Bibitem{Smo18}
\by N.~K.~Smolentsev
\paper On almost (para)complex Cayley structures on spheres $\mathbf{S}^{2,4}$ and $\mathbf{S}^{3,3}$
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2018
\issue 53
\pages 22--38
\mathnet{http://mi.mathnet.ru/vtgu647}
\crossref{https://doi.org/10.17223/19988621/53/3}
\elib{https://elibrary.ru/item.asp?id=35122603}
Linking options:
  • https://www.mathnet.ru/eng/vtgu647
  • https://www.mathnet.ru/eng/vtgu/y2018/i53/p22
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :126
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024