Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 49, Pages 43–51
DOI: https://doi.org/10.17223/19988621/49/4
(Mi vtgu606)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Estimating parameters in a regression model with dependent noises

M. A. Povzun, E. A. Pchelintsev

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (431 kB) Citations (2)
References:
Abstract: Let on the probability space $(\Omega, \mathcal{F}, \mathrm{P})$ the observations be described by the equation
\begin{equation} Y=\theta+\nu\xi, \tag{1} \end{equation}
where $\theta\in\Theta\subset\mathbb{R}^d$ is a vector of unknown parameters, $\nu$ is a known positive number, $\xi$ is the vector of first $d$ values of the $\mathrm{AR(p)/ARCH(q)}$ process which satisfies the equation
\begin{equation} \xi_t=\beta_0+\sum_{i=1}^p\beta_1\xi_{i-1}+\sqrt{\alpha_0+\sum_{j=1}^q\alpha_j\xi^2_{j-1}}\varepsilon_t.\tag{2} \end{equation}
We suppose that the noise $\xi$ has a conditionally Gaussian distribution with respect to some $\sigma$-algebra $\mathcal{G}$ with a zero mean and the conditional covariance matrix $D(\mathcal{G})$ such that
$$ trD(\mathcal{G})-\lambda_{\max}(D(\mathcal{G}))\geqslant\kappa(d)\geqslant0 $$
and
$$ \mathrm{E}\lambda_{\max}(D(\mathcal{G}))\leqslant\lambda^*. $$
Let $\xi_0$ be a random variable with a zero mean and variance $s^2$. The matrix $D(\mathcal{G})$ may depend on $\nu, \beta_i,\alpha_j,s^2$. The coefficients $\alpha_0,\dots,\alpha_k$ are assumed to be nonnegative. The noise $(\varepsilon_t)_{t\geqslant0}$ in (2) is a sequence of i.i.d. random variables with a finite mean and constant variance $\sigma^2$ [13]. The nuisance parameters $(\beta_i)_{1\leqslant i\leqslant p}$, $(\alpha_j)_{1\leqslant j\leqslant q}$, and $s^2$ of the noise are unknown.
The problem is to estimate the vector of unknown parameters $\theta=(\theta_1,\dots, \theta_d)$ in the model (1) by observations $Y$.
It is known that, in the class of linear unbiased estimators, the best one is the least-squares estimator (LSE)
\begin{equation} \hat{\theta}=Y.\tag{3} \end{equation}
However, for example, in the case of pulse-type disturbances, such an estimate may have a low accuracy. In [8–12], special modifications of this estimate were developed for discrete and continuous models with dependent conditionally Gaussian noises. Following this approach, this paper proposes the following shrinkage procedure for estimating the parameter $\theta$:
\begin{equation} \theta^*=\left(1-\frac c{|Y|}\right), \tag{4} \end{equation}
where $c=\nu^2\kappa(d)\delta_d$, $\delta_d=\left(\rho+\sqrt{2\lambda^*}\nu\frac{\Gamma((d+1)/2)}{\Gamma(d/2)}\right)^{-1}$, $\rho=\sup\limits_{\theta\in\Theta}\{|\theta|\}$.
The main result of this paper is the following theorem.
Theorem. There exists an integer $d_0\geqslant2$ such that for any $d\geqslant d_0$ the estimate $\theta^*$ given by (4) outperforms the LSE (3) in the mean square accuracy. Moreover, the minimal gain in the mean square accuracy satisfies the inequality
$$ \Delta(\theta)=R(\theta^*,\theta)-R(\hat{\theta},\theta)\leqslant-c^2. $$

The results of numerical simulation of the empirical risks of the proposed improved estimate and LSE for the $\mathrm{AR(1)/ARCH(1)}$ noise model confirm the statement of the theorem.
Keywords: regression, improved estimation, mean square risk, conditionally Gaussian noise, $\mathrm{AR/ARCH}$ process.
Funding agency Grant number
Russian Science Foundation 17-11-01049
Received: 11.07.2017
Bibliographic databases:
Document Type: Article
UDC: 519.23
Language: Russian
Citation: M. A. Povzun, E. A. Pchelintsev, “Estimating parameters in a regression model with dependent noises”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49, 43–51
Citation in format AMSBIB
\Bibitem{PovPch17}
\by M.~A.~Povzun, E.~A.~Pchelintsev
\paper Estimating parameters in a regression model with dependent noises
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 49
\pages 43--51
\mathnet{http://mi.mathnet.ru/vtgu606}
\crossref{https://doi.org/10.17223/19988621/49/4}
\elib{https://elibrary.ru/item.asp?id=30753667}
Linking options:
  • https://www.mathnet.ru/eng/vtgu606
  • https://www.mathnet.ru/eng/vtgu/y2017/i49/p43
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:206
    Full-text PDF :62
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024