Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 49, Pages 26–42
DOI: https://doi.org/10.17223/19988621/49/3
(Mi vtgu605)
 

MATHEMATICS

Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems

K. B. Mansimovab, V. A. Suleymanovab

a Baku State University, Baku, Azerbaijan
b Institute of Control Systems of Azerbaijan National Academy of Sciences
References:
Abstract: In this paper, a boundary optimal control problem described by the Goursat–Darboux system is considered under the assumption that the control domain is open.
We consider the problem of minimizing of the functional
$$ I(u)=\varphi(a(t_1))+G(z(t_1,x_1)), $$
under constraints
\begin{gather*} u(t)\in U\subset R^r, \quad t\in T=[t_0,t_1],\\ z_{tx}=B(t,x)z_t+f(t, x, z, z_x), \quad(t, x)\in D=[t_0, t_1]\times[x_0, x_1],\\ z(t,x_0)=a(t), \quad t\in T=[t_0, t_1],\\ z(t_0, x)=b(x), \quad x\in X=[x_0,x_1],\\ a(t_0)=b(x_0)=a_0,\\ \dot{a}=g(t,a,u),\quad t\in T,\\ a(t_0)=a_0. \end{gather*}

Here, $f(t,x,z,z_x)$ is a given $n$-dimensional vector-function which is continuous with respect to set of variables, together with partial derivatives with respect to $z,z_x$ up to second order, $B(t,x)$ is a given measurable and bounded matrix function, $b(x)$ is a given $n$-dimensional absolute continuous vector-valued function, $t_0, t_1, x_0, x_1$ ($t_0<t_1; x_0<x_1$) are given, $a_0$ a is a given constant vector, $g(t,a,u)$ given $n$-dimensional vector-function which is continuous with respect to the set of variables together with partial derivatives with respect to $(a,u)$ up to second order, $\varphi(a)$ and $G(z)$ are given twice continuously differentiable scalar functions, $U$ is a given nonempty, bounded, and open set, and $u(t)$ is a measurable and bounded $r$-dimensional control vector-function.
The first and second order necessary conditions of optimality are established.
Keywords: boundary control, Goursat–Darboux systems, analoqus the Eyler equation, analoqus the Gabasov–Kirillova optimality condition.
Received: 15.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517.977.56
Language: Russian
Citation: K. B. Mansimov, V. A. Suleymanova, “Necessary optimality conditions in the one boundary control problem for Qoursat–Darboux systems”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49, 26–42
Citation in format AMSBIB
\Bibitem{ManSul17}
\by K.~B.~Mansimov, V.~A.~Suleymanova
\paper Necessary optimality conditions in the one boundary control problem for Qoursat--Darboux systems
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 49
\pages 26--42
\mathnet{http://mi.mathnet.ru/vtgu605}
\crossref{https://doi.org/10.17223/19988621/49/3}
\elib{https://elibrary.ru/item.asp?id=30753666}
Linking options:
  • https://www.mathnet.ru/eng/vtgu605
  • https://www.mathnet.ru/eng/vtgu/y2017/i49/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :145
    References:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024