Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 49, Pages 16–25
DOI: https://doi.org/10.17223/19988621/49/2
(Mi vtgu604)
 

This article is cited in 3 scientific papers (total in 3 papers)

MATHEMATICS

On the inverse problem of finding the right-hand side of wave equation with nonlocal condition

H. F. Guliyeva, Yu. S. Gasimovbc, H. T. Tagiyeva, T. M. Huseynovad

a Baku State University, Baku, Azerbaijan
b Institute of Mathematics and Mechanics of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
c Azerbaijan University, Baku, Azerbaijan
d Azerbaijan State Pedagogical University, Baku, Azerbaijan
Full-text PDF (406 kB) Citations (3)
References:
Abstract: Recently, inverse problems for the differential equations have been intensively studied. Such problems arise in the various fields of mathematics, geophysics, seismology, astronomy, ecology, etc. In this paper, we propose an approach to solving the inverse problem for the wave equation. The search for the unknown right-hand side of the equation is reduced to the problem of minimizing the functional constructed using additional information. The gradient of the functional is calculated and the optimality condition is derived.
In the cylinder $\mathcal{Q}_T=\Omega\times(0,T)$, consider the problem
\begin{gather} \frac{\partial^2u}{\partial t^2}-\Delta u=\vartheta(x,t), \quad (x,t)\in\mathcal{Q}_T,\\ u(x,0)=\varphi_0(x), \frac{\partial u(x,0)}{\partial t}=\varphi_1(x), \quad x\in\Omega,\\ \frac{\partial u}{\partial \nu}\Big|_{S_T}=\int_\Omega K(x,y)u(y,t)dy,\quad (x,t)\in S_T, \end{gather}
where $\Omega\in R^n$ is a bounded domain with a smooth boundary $\partial\Omega$, $S_T=\partial\Omega\times(0,T)$ is the laterial surface of $\mathcal{Q}_T$, $\nu$ is an outward normal to $\partial\Omega$, $\varphi_0(x)\in W_2^1(\Omega)$, $\varphi_1(x)\in L_2(\Omega)$, $K(x,y)\in L_2(\Omega\times\Omega)$ are given functions, and $\vartheta(x,t)\in L_2(\mathcal{Q}_T)$ is the unknown function. To determine $\vartheta(x,t)$, we use the following additional information:
\begin{equation} u(x, T)=g(x), x\in\Omega, \text{ where }g(x)\in L_2(\Omega) \text{ is a given function.} \tag{4} \end{equation}
The problem is reduced to the following problem: minimize the functional
\begin{equation} J_0(\vartheta)=\frac12\int_\Omega(u(x,T;\vartheta)-g(x))^2dx\tag{5} \end{equation}
subject to (1)–(3), where $u(x,T;\vartheta)$ is a solution of problem (1)–(3) corresponding to $\vartheta(x,t)$ which is called a control. The solvability of problem (1)–(3), (5) is proved.
Consider the functional
\begin{equation} J_\alpha(\vartheta)=J_0(\vartheta)+\frac\alpha2\int_0^T\int_\Omega(\vartheta(x,t)-\omega(x,t))^2dx\,dt.\tag{6} \end{equation}
Then, the differential of this functional is calculated and the following theorem is proved:
Theorem. Under the considered conditions, for the optimality of the control $\vartheta_*=\vartheta_*(x,t)\in U_{ad}$ in the problem (1)–(3), (6) it is necessary that the inequality
\begin{equation} \int_0^T\int_\Omega(\alpha(\vartheta_*-\omega)-\psi(x,t;\vartheta_*))(\vartheta-\vartheta_*)dx\,dt\geqslant0\tag{7} \end{equation}
is fulfilled for all $\vartheta\in U_{ad}$.
Keywords: inverse problem, wave equation, nonlocal conditions, optimality condition.
Received: 16.03.2017
Bibliographic databases:
Document Type: Article
UDC: 517. 977.5
Language: Russian
Citation: H. F. Guliyev, Yu. S. Gasimov, H. T. Tagiyev, T. M. Huseynova, “On the inverse problem of finding the right-hand side of wave equation with nonlocal condition”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49, 16–25
Citation in format AMSBIB
\Bibitem{GulGasTag17}
\by H.~F.~Guliyev, Yu.~S.~Gasimov, H.~T.~Tagiyev, T.~M.~Huseynova
\paper On the inverse problem of finding the right-hand side of wave equation with nonlocal condition
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 49
\pages 16--25
\mathnet{http://mi.mathnet.ru/vtgu604}
\crossref{https://doi.org/10.17223/19988621/49/2}
\elib{https://elibrary.ru/item.asp?id=30753665}
Linking options:
  • https://www.mathnet.ru/eng/vtgu604
  • https://www.mathnet.ru/eng/vtgu/y2017/i49/p16
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:294
    Full-text PDF :95
    References:59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024