Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 49, Pages 5–15
DOI: https://doi.org/10.17223/19988621/49/1
(Mi vtgu603)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

On small variation formulas

Ya. V. Borisova, I. A. Kolesnikov, S. A. Kopanev

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (435 kB) Citations (2)
References:
Abstract: One of the main methods for solving extremal problems is the variational method. Variational formulas are the main tool of the variational method. Some variational formulas, the so-called small variational formulas, were obtained by means of a family of mappings from the unit disk onto domains lying in the unit disk. There is a theorem in the paper that gives a rather general approach to obtaining small variational formulas.
Theorem. Let the map $g: E_z\times (0,\varepsilon_0)\to E_\zeta$, $\zeta=g(z,\varepsilon)$ satisfy the following conditions:
  • $\forall \varepsilon\in (0,\varepsilon_0)$, the contraction $g\mid_{E\times\{\varepsilon\}}$ is a holomorphic univalent mapping;
  • $\lim\limits_{\varepsilon\to+0}g(z,\varepsilon)=z$, locally uniformly in $E_z$;
  • there exists a partial right derivative of $g(z,\varepsilon)$ and $g'_z(z,\varepsilon)$ with respect to $\varepsilon$ at the origin, locally uniformly in $E_z$.
Then, in the class $S$ for the mapping $f\in S$, the following variational formulas take place:
\begin{gather*} f_1(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)g'_\varepsilon(z,0) -f(z)f''(0)g'_\varepsilon(0,0)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{1} \end{gather*}
where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$;
\begin{gather*} f_2(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)\right)-f(z)g''_{z\varepsilon}(0,0)\right)+o(z,\varepsilon),\\ \varepsilon\in(0,\varepsilon_0), \tag{2} \end{gather*}
where $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$;
\begin{equation} f_3(z,\varepsilon)=f(z)+\varepsilon P_3(z)+o(z,\varepsilon),\quad \varepsilon\in(0,\hat\varepsilon), \tag{3} \end{equation}
where
\begin{gather*} P_3(z)=f'(z)(g'_\varepsilon(z,0)+z^2\overline{u}-u+itz)-\\ -f(z)(f''(0)(g'_\varepsilon(0,0)-u)+g''_{z\varepsilon}(0,0)+it)-g'_\varepsilon(0,0)+u, \end{gather*}
$\hat\varepsilon=\min\left(\varepsilon_0,\frac1{|u|}\right)$, $u$, $t$ are constants, $u\in\mathbb{C}$, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$;
\begin{gather*} f_4(z,\varepsilon)=f(z)+\varepsilon\left(f'(z)\left(z^2\overline{g'_\varepsilon(0,0)}+g'_\varepsilon(z,0)-g'_\varepsilon(0,0)+itz\right)-f(z)(g''_{z\varepsilon}(0,0)+it)\right)+\\ +o(z,\varepsilon),\quad \varepsilon\in(0,\hat\varepsilon),\tag{4} \end{gather*}
where $t$ is a constant, $t\in\mathbb{R}$, and $\lim\limits_{\varepsilon\to+0}\frac{o(z,\varepsilon)}{\varepsilon}=0$ locally uniformly in $E_z$.
A number of new small variations have been obtained. In adition, the P. P. Kufarev method of finding parameters in the Christoffel–Schwarz integral is illustrated by a simple example.
Keywords: holomorphic univalent mapping, variational formula, parameters in the Christoffel–Schwarz integral, Kufarev method.
Received: 12.07.2017
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: Ya. V. Borisova, I. A. Kolesnikov, S. A. Kopanev, “On small variation formulas”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 49, 5–15
Citation in format AMSBIB
\Bibitem{BorKolKop17}
\by Ya.~V.~Borisova, I.~A.~Kolesnikov, S.~A.~Kopanev
\paper On small variation formulas
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 49
\pages 5--15
\mathnet{http://mi.mathnet.ru/vtgu603}
\crossref{https://doi.org/10.17223/19988621/49/1}
\elib{https://elibrary.ru/item.asp?id=30753664}
Linking options:
  • https://www.mathnet.ru/eng/vtgu603
  • https://www.mathnet.ru/eng/vtgu/y2017/i49/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:150
    Full-text PDF :61
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024