Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 46, Pages 14–20
DOI: https://doi.org/10.17223/19988621/46/2
(Mi vtgu573)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICS

Totally ordered fields with symmetric gaps

N. Yu. Galanova

Tomsk State University, Tomsk, Russian Federation
Full-text PDF (427 kB) Citations (2)
References:
Abstract: The paper investigates properties of totally ordered fields with symmetric gaps. Let $(A, B)$ be a gap of an ordered field $K$. The set $A$ is called long-shore if for all $a\in A$ there exists $a_1\in A$ such that $(a_1+(a_1-a))\in B$. If both of the shores $A$ and $B$ are long-shore, then the gap $(A, B)$ is called symmetric. We consider under (GCH) a real closed field $K$, $|K|=|G|=cf(G)=\beta>\aleph_0$, where $G$ is the group of Archimedean classes of $K$ and cofinality of each symmetric gap of $K$ is $\beta$. We show that $K$ is order-isomorphic to the field of bounded formal power series $\mathbf{R}[[G, \beta]]$. We prove that a gap $(A, B)$ of an ordered field $K$ is symmetric iff $\exists t\in \mathbf{R}[[G]]\setminus K$, $A<t<B$, where $G$ is the group of Archimedean classes of $K$. For any ordered field, with a symmetric gap of cofinality $\beta$ we construct a subfield, with a symmetric gap of the same cofinality. We consider an example of real closed field $H$, $\mathbf{R}[[G, \beta]]\subset H\subset\mathbf{R}[[G, \beta^+]]$, with a symmetric gap of cofinality $\beta^+$.
Keywords: totally ordered Abelian group, totally ordered field, field of bounded formal power series, simple transcendental extension of ordered field, real closure, symmetric gap, cofinality of a gap.
Received: 30.08.2016
Bibliographic databases:
Document Type: Article
UDC: 512.623.23
Language: Russian
Citation: N. Yu. Galanova, “Totally ordered fields with symmetric gaps”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 46, 14–20
Citation in format AMSBIB
\Bibitem{Gal17}
\by N.~Yu.~Galanova
\paper Totally ordered fields with symmetric gaps
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 46
\pages 14--20
\mathnet{http://mi.mathnet.ru/vtgu573}
\crossref{https://doi.org/10.17223/19988621/46/2}
\elib{https://elibrary.ru/item.asp?id=29207359}
Linking options:
  • https://www.mathnet.ru/eng/vtgu573
  • https://www.mathnet.ru/eng/vtgu/y2017/i46/p14
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:174
    Full-text PDF :45
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024