|
MECHANICS
Numerical investigation of the effect of aerodynamic fragmentation of condensate particles on the two-phase impulse losses in a solid-fuel rocket engine nozzle
N. N. Dyachenkoa, L. I. Dyachenkob, V. S. Gurovaa, S. A. Sineokayaa a Tomsk State University, Tomsk, Russian Federation
b Scientific Research Institute of Applied Mathematics and Mechanics of Tomsk State University,
Tomsk, Russian Federation
Abstract:
The work is devoted to numerical investigation of the effect of aerodynamic fragmentation of
aluminum oxide liquid particles on the characteristics of two-phase flow in a nozzle of solid-propellant rocket engine and to comparative analysis of the application of the fragmentation
criterion in the form of a constant value or a functional dependency.
Combustion products of a metallized fuel form a mixture of gas and condensate particles. The
flow is non-equilibrium, which induces two-phase impulse losses in the engine nozzle. The
interaction of liquid condensate particles with a gas is accompanied by their fragmentation and
coagulation. The interaction of the particles is described based on the continuous approach to
variation in the size distribution function. The aerodynamic fragmentation of particles is
characterized by a critical Weber number which is equal to 17 in the engineering calculations. The
fragmentation is a complex process which depends both on parameters of the gas flow and
parameters of the ensemble of liquid particles which change along the nozzle. Therefore, the
critical Weber number must be multifunctional dependent.
An empirical functional dependence determining the critical Weber number is shown. The
results of calculations of two-phase impulse losses with the fragmentation criterion in the form of
a constant value or a functional dependence are presented.
Keywords:
two-phase flow, coagulation and fragmentation of the particles, size distribution of the particles.
Received: 14.11.2016
Citation:
N. N. Dyachenko, L. I. Dyachenko, V. S. Gurova, S. A. Sineokaya, “Numerical investigation of the effect of aerodynamic fragmentation of condensate particles on the two-phase impulse losses in a solid-fuel rocket engine nozzle”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45, 88–94
Linking options:
https://www.mathnet.ru/eng/vtgu570 https://www.mathnet.ru/eng/vtgu/y2017/i45/p88
|
Statistics & downloads: |
Abstract page: | 151 | Full-text PDF : | 69 | References: | 32 |
|