Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 45, Pages 49–59
DOI: https://doi.org/10.17223/19988621/45/4
(Mi vtgu566)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition

R. K. Tagieva, R. A. Kasumovb

a Baku State University, Azerbaijan
b Lankaran State University, Azerbaijan
Full-text PDF (442 kB) Citations (5)
References:
Abstract: Let a controlled process be described in $\mathcal{Q}_T = \{(x,t) \in R^2 : 0 < x <\ell, 0 < t < T\}$ by the following initial-boundary value problem for a linear parabolic equation:
\begin{gather*} u_t-(k(x,t)u_x)_x+q(x,t)u=f(x,t), \quad (x,t)\in\mathcal{Q}_T,\\ u\mid_{t=0}=\varphi(x), \quad 0\leqslant x\leqslant\ell,\\ u_x\mid_{x=0}=u_x\mid_{x=\ell}=0, \quad 0<t\leqslant T. \end{gather*}
Here $\ell, T>0$ are given numbers $f (x,t)\in L_2 (\mathcal{Q}_T)$, $\varphi(x)\in W_2^1(0,\ell)$ are given functions, $k(x,t)$, $q(x,t)$ are unknown coefficients, $\upsilon(x,t) = (k(x,t),q(x,t))$ is a control, $u = u(x,t)= u(x,t;\upsilon)$ is the solution to the boundary value problem corresponding to the control $\upsilon = \upsilon(x,t)$.
Let us introduce a set of admissible controls
\begin{gather*} V = \{\upsilon(x,t) = (k(x,t),q(x,t)) \in H = W_2^1(\mathcal{Q}_T)\times L_2 (\mathcal{Q}_T): 0 < v \leqslant k(x,t)\leqslant \mu,\\ |k_x (x,t)|\leqslant\mu_1,\ |k_t (x,t)| \leqslant\mu_2,\ 0 \leqslant q_0 \leqslant q(x,t) \leqslant q_1 \text{ п.в.на } \mathcal{Q}_T\}, \end{gather*}
where $\mu\geqslant v> 0$, $\mu_1, \mu_2 > 0$, $q_1 \geqslant q_0 \geqslant 0$ are given numbers.
Let us state the following coefficient inverse problem of optimal control type: among all the admissible controls $\upsilon(x,t)=(k(x,t),q(x,t))\in V$, find the controls $\upsilon_*(x,t)=(k_*(x,t),q_*(x,t))\in V$ minimizing the functional
$$ J(\upsilon)=\int_0^T\left|\int_0^{\ell}K(x, t)u(x,t;\upsilon)dx-E(t) \right|^2dt $$
where $K(x,t)$, $E(t)$ are known functions, $\upsilon= \upsilon(x,t)$ is a control $u = u(x,t) = u(x,t;\upsilon)$ is a generalized solution to the boundary value problem from $V_2^{1,0} (\mathcal{Q}_T)$ corresponding to the control $\upsilon = \upsilon(x, t)$ is a given set.
In the present work, the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition is considered. The questions of correctness of the optimization formulation of the inverse problem are investigated. The differentiability of the objective functional is proved and the formula for its gradient is found. A necessary condition of optimality is found in the form of a variational inequality.
Keywords: optimal control, parabolic equation, integral boundary condition, optimality condition.
Received: 07.09.2016
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: R. K. Tagiev, R. A. Kasumov, “On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45, 49–59
Citation in format AMSBIB
\Bibitem{TagKas17}
\by R.~K.~Tagiev, R.~A.~Kasumov
\paper On the optimization formulation of the coefficient inverse problem for a parabolic equation with an additional integral condition
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 45
\pages 49--59
\mathnet{http://mi.mathnet.ru/vtgu566}
\crossref{https://doi.org/10.17223/19988621/45/4}
\elib{https://elibrary.ru/item.asp?id=28821793}
Linking options:
  • https://www.mathnet.ru/eng/vtgu566
  • https://www.mathnet.ru/eng/vtgu/y2017/i45/p49
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :97
    References:51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024