Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 45, Pages 35–48
DOI: https://doi.org/10.17223/19988621/45/3
(Mi vtgu565)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables

D. Yu. Ivanov

Moscow State Academy of Water Transport, Moscow, Russian Federation
Full-text PDF (482 kB) Citations (1)
References:
Abstract: Let $\Omega'$ and $\Omega''$ be some Lebesgue measurable sets in the metric spaces $\mathbf{R}^m$ and $\mathbf{R}^n$, respectively, and $\mathbf{A}$ be a linear operator in the space $L_2(\Omega')$. We define an operator $\tilde{\mathbf{A}}$ in the space $L_2(\Omega'\times \Omega'')$ on the basis of equalities
$$ (\tilde{\mathbf{A}}\mathbf{f})(x'')=\mathbf{A}\mathbf{f}(x'')\quad (\mathbf{f}\in D(\tilde{\mathbf{A}}),\ x''\in\Omega''), $$
where $D(\tilde{\mathbf{A}})$ is a domain of operator $\tilde{\mathbf{A}}$. These equations mean that an element $\mathbf{f}\in L_2(\Omega'\times \Omega'')$ represented by a function $\mathbf{f}(x'')$ with values in $D(\mathbf{A})$ belongs to the set $D(\tilde{\mathbf{A}})$ if there exists an element $\mathbf{g}\in L_2(\Omega'\times \Omega'')$ represented by the function $\mathbf{g}(x'')$ such that the pointwise equalities $\mathbf{g}(x'')=\mathbf{A}\mathbf{f}(x'')$ are satisfied almost everywhere in the Lebesgue measure on the set $\Omega''$. Then, $\tilde{\mathbf{A}}\mathbf{f}=\mathbf{g}$. Similarly, using a linear operator $\mathbf{B}$ acting in the space $L_2(\Omega'')$, we define an operator $\tilde{\mathbf{B}}$ in the space $L_2(\Omega'\times \Omega'')$. It is proved that the sum of operators $\tilde{\mathbf{A}}+\tilde{\mathbf{B}}$ defined on the set $D(\tilde{\mathbf{A}})\cap D(\tilde{\mathbf{B}})$ is closed if the operators $\mathbf{A}$ and $\mathbf{B}$ are generators of some $C_0$-semigroups of contractions; here, the operator $\mathbf{B}$ is selfadjoint and has a purely point spectrum. For example, if the operator $\mathbf{A}_t$, $(\mathbf{A}_t\mathbf{f})(t)=f'(t)$ is defined on absolutely continuous functions $f(t)\in L_2(I_T)$ ($I_T\equiv [0, T]$) such that $f'(t)\in L_2(I_T)$ and $f(0)=0$, as well as on equivalent functions and operator $\mathbf{B}_y$, $(\mathbf{B}_y\mathbf{f})(y)=-f''(y)$, is defined on absolutely continuously differentiable functions $f(y)\in L_2(I_Y)$ ($I_Y\equiv [0, Y]$) such that $f''(y)\in L_2$ and $f'(0)-\lambda_0 f(0)=0$, $f'(0)+\lambda_Yf(0)=0$ ($0\leqslant \lambda_0$, $\lambda_Y\leqslant\infty$), as well as on equivalent functions, the sum of differential operators $\tilde{\mathbf{A}}_t+\tilde{\mathbf{B}}_y$ is closed. The closure of the operator $\tilde{\mathbf{A}}_t+\tilde{\mathbf{B}}_y$ is used as a coefficient in operator-differential equations in the formulation of problems of multidimensional non-stationary heat conduction. We have studied smoothness of functions included in the domains of powers of operators $\tilde{\mathbf{A}}_t+\tilde{\mathbf{B}}_y$. It is proved that if $f(y, t)\in D\left((\tilde{\mathbf{A}}_t+\tilde{\mathbf{B}}_y)^n\right)$ ($n\geqslant 2$), then, almost everywhere on the set $I_Y\times I_T$, there exist derivatives $\partial_t^{l-1}\partial_y^{2(n-l)-1}f$ ($l=\overline{1, n-1}$) equivalent to functions absolutely continuous on $I_Y\times I_T$.
Keywords: closed linear operator, sum of operators, generator of $C_0$-semigroup, domain of definition of operator.
Received: 03.10.2016
Bibliographic databases:
Document Type: Article
UDC: 517.983.24
Language: Russian
Citation: D. Yu. Ivanov, “Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45, 35–48
Citation in format AMSBIB
\Bibitem{Iva17}
\by D.~Yu.~Ivanov
\paper Closedness of sums of unbounded operators acting on different variables in the spaces of square-integrable functions of several variables
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 45
\pages 35--48
\mathnet{http://mi.mathnet.ru/vtgu565}
\crossref{https://doi.org/10.17223/19988621/45/3}
\elib{https://elibrary.ru/item.asp?id=28821792}
Linking options:
  • https://www.mathnet.ru/eng/vtgu565
  • https://www.mathnet.ru/eng/vtgu/y2017/i45/p35
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024