Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Tomsk. Gos. Univ. Mat. Mekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika, 2017, Number 45, Pages 25–34
DOI: https://doi.org/10.17223/19988621/45/2
(Mi vtgu564)
 

MATHEMATICS

On the theory of $2$-ordered groups

A. I. Zabarinaa, G. G. Pestovb, E. A. Fominaa

a Tomsk State Pedagogical University, Tomsk, Russian Federation
b Tomsk State University Tomsk, Russian Federation
References:
Abstract: 1. On the order on a straight line $l_{e, \alpha}$.
Let $\langle G, \cdot, \zeta\rangle$ is a non-degenerate $2$-ordered group, $\alpha\in G$, $o(\alpha)=2$, $l_{e, \alpha}=\{x\in G\mid \zeta(\alpha, e, x)=0\}$.
It is known that $l_{e,\alpha} \triangleleft G$. As $l_{e,\alpha}\ne G$, then $\exists c\in G(\zeta(c,\alpha,e)\ne0)$. Let $\zeta(c, \alpha, e)=1$.
Let: $x<y \Leftrightarrow \zeta_c(x,y)=\zeta(c, x, y)=1$.
It is known that the function $\zeta_c$ sets linear order on the line $l_{e,\alpha}$. Let us note that $\alpha<e$ regarding this order. As $\alpha\in l_{e,\alpha}$ then the group $\langle l_{e,\alpha},\cdot\rangle$ cannot be linearly ordered. Let us find a subgroup which is linearly ordered regarding to the specified order $\zeta_c$.
Theorem 1.1. Let $P=\{x\in l_{e,\alpha}\mid x\geqslant e\}$, $H=P\cup P^{-1}$. If $|P|\ne1$, then $\langle H, \cdot, \zeta_c\rangle$ is a linearly ordered group.
2. On the cardinality of the set of elements of order $n$ in $2$-ordered group
Let $n\in\mathbf{N}$ and $H=\{x\in G \mid x^n=e\}$. As $T(G) \subset Z(G)$, then $H < G$ and $H$ is an Abelian group. Consequently, $\langle H, \cdot, \zeta\rangle$ is a locally finite $2$-ordered group. Let $\zeta\not\equiv0$ on the set $H$.
Theorem 2.1. Let $\langle G, \cdot, \zeta\rangle$ be a non-degenerate $2$-ordered group, $n\in\mathbf{N}$ and $H=\{x\in G\mid x^n=e\}$. If $\zeta\not\equiv0$ on the set $H$, then $|H| \leqslant n$.
Keywords: linearly ordered group, two-dimensional order, $2$-ordered group, involution, straight line.
Received: 04.10.2016
Bibliographic databases:
Document Type: Article
UDC: 512.545.8
Language: Russian
Citation: A. I. Zabarina, G. G. Pestov, E. A. Fomina, “On the theory of $2$-ordered groups”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017, no. 45, 25–34
Citation in format AMSBIB
\Bibitem{ZabPesFom17}
\by A.~I.~Zabarina, G.~G.~Pestov, E.~A.~Fomina
\paper On the theory of $2$-ordered groups
\jour Vestn. Tomsk. Gos. Univ. Mat. Mekh.
\yr 2017
\issue 45
\pages 25--34
\mathnet{http://mi.mathnet.ru/vtgu564}
\crossref{https://doi.org/10.17223/19988621/45/2}
\elib{https://elibrary.ru/item.asp?id=28821791}
Linking options:
  • https://www.mathnet.ru/eng/vtgu564
  • https://www.mathnet.ru/eng/vtgu/y2017/i45/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Томского государственного университета. Математика и механика
    Statistics & downloads:
    Abstract page:139
    Full-text PDF :43
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024